

PCAP04/02/01

Interpreting and Scaling Raw Results

PCAP04/02/01 Application Note

Revision: 1 Release Date: 2021-12-07 Document Status: Production

Content Guide

C	onten	t Guide	2
1	Int	roduction	3
2	Che	oice the Reference	3
	2.1	Example 1, Reference = 100 pF	.4
	2.2	Example 2, Reference = 10 pF	.4
	2.3	Data Range	.5
3	Sur	mmary / Result	5
4	Сор	pyrights & Disclaimer	6
5	Rev	vision information	6

1 Introduction

PCAP04, PCAP02 and PCAP01 are capacitance-to-digital converters (CDC) and resistance-to-digital converters (RDC) with an integrated digital signal processor (DSP) for on-chip data post-processing.

In this application note, the STANDARD Firmware is used. The firmware translates the TDC Start and TDC Stop values into CDC and RDC values, means ratios. These ratios are calculated by means of the discharge times, depending on the configuration. From 9 possible results, 8 results are given out in the result register RES0...7.

The focus of this application note is the ratio. For the conversion into Farad and the proper setting of the scaling factor and offset please refer to the user guide (e.g., SC-001587-UG).

2 Choice the Reference

In these examples we use as default the 'Standard' configuration (with internal stray compensation). For illustration, we use capacitances of 10 pF and 100 pF to get ratios of external reference and sensor of a ratio of 10, 1 and 0.1.

Application:

- PC0 = Reference = 100 pF or 10 pF
- PC1 = Sensor 1 = 10 pF
- PC2 = Sensor 2 = 100 pF
- Span for each sensor = 10 pF
- Parasitic capacitance of each port about 7 pF

In the case of linear sensors, any deviation can be corrected by column 'Factor' and 'Offset':

- Column 'Factor' = reference plus parasitic capacitance
- Column 'Offset' = negative offset of parasitic capacitance

For non-linear sensors, further measures are required to compensate for any deviations.

Simplified formulas for columns 'Factor', 'Offset' and 'Span' are:

• Column 'Factor' =
$$\left(1 + \frac{Parasitic}{Reference}\right)$$

• Column'Offset' =
$$-(\frac{Parasitic}{Reference})$$

• Column 'Span' = $\left(\frac{Span}{Reference}\right)$

Signal-to-Noise ratio (SNR) in bit is calculated as a binary logarithm of span over noise.

• Column'SNR[bit]' =
$$\frac{\ln(\frac{'Span'}{'Noise'})}{\ln(2)}$$

2.1 Example 1, Reference = 100 pF

'Factor' = 100 pF + 7 pF, 'Offset' = -7 pF and 'Span' = 10 pF

#	Name	Results	Filter	fpp	Factor	Offset		Span	Final Result	Mean 50	Std Dev	SNR [bit]
0	C0/Cref	08000004	none 🧹 S	-27	107p	-7p	AO	10p	100p	100p	0	Inf
1	C1/Cref	014C78DE	none 🧹 S	-27	107p	-7p	AO	10p	10,3704p	10,3701p	430,7a	14,5
2	C2/Cref	0809B977	none 🧹 S	-27	107p	-7p	AO	10p	100,508p	100,509p	1,183f	13,04

Figure 1: Example 1, unit [pF]

Expected ratio, if 'Factor' = $(1 + \frac{7}{100})$, 'Offset' = $-(\frac{7}{100})$ and 'Span' = $(\frac{10}{100})$

- C1/Cref = 0.1
- C2/Cref = 1.0

#	Name	Results	Filter	fpp	Factor	Offset		Span	Final Result	Mean 50	Std Dev	SNR [bit]
0	C0/Cref	08000004	none 🧹 S	-27	1,07	-0,07	AO	0,1	1	1	224,3a	48,66
1	C1/Cref	014C772D	none 🧹 S	-27	1,07	-0,07	AO	0,1	103,7m	103,7m	3,708u	14,72
2	C2/Cref	0809C114	none 🧹 S	-27	1,07	-0,07	AO	0,1	1,0051	1,00508	8,545u	13,51

Figure 2: Example 1, Unit [Ratio]

2.2 Example 2, Reference = 10 pF

'Factor' = 10 pF + 7 pF, 'Offset' = -7 pF and 'Span' = 10 pF

#	Name	Results	Filter	fpp	Factor	Offset		Span	Final Result	Mean 50	Std Dev	SNR [bit]
0	CO/Cref	08000019	none 🗸 s	-27	17p	-7p	AO	10p	10p	10p	0	Inf
1	C1/Cref	082F3348	none 🤍 S	-27	17p	-7p	AO	10p	10,3918p	10,3919p	271,1a	15,17
2	C2/Cref	32AC3C83	none 🤍 S	-27	17p	-7p	AO	10p	100,68p	100,673p	2,675f	11,87

Figure 3: Example 2, Unit [pF]

Expected ratio if using '*Factor*' = $(1 + \frac{7}{10})$, '*Offset*' = $-(\frac{7}{10})$ and '*Span*' = $(\frac{10}{10})$

- C1/Cref = 1.0
- C2/Cref = 10.0

#	Name	Results	Filter	fpp	Factor	Offset		Span	Final Result	Mean 50	Std Dev	SNR [bit]
0	C0/Cref	08000019	none 🗸 S	-27	1,7	-0,7	AO	1	1	1	0	Inf
1	C1/Cref	082F2B15	none 🗸 S	-27	1,7	-0,7	AO	1	1,03915	1,03919	27,27u	15,16
2	C2/Cref	32ABD1FC	none 🗸 S	-27	1,7	-0,7	AO	1	10,0676	10,0673	257u	11,93

Figure 4: Example 2, Unit [Ratio]

2.3 Data Range

In order to avoid the limitation of the result register, one should keep an eye on the ratio. PCAP04 has specified 5 integer bits, but due to the STANDARD FW only 4 integer bits are available. The maximum possible ratio is therefore 15.999 (with integer = 4 bits and fractional = 27 bits).

$$Max.Ratio = 2^{(integer)} - \frac{1}{2^{(fractional)}}$$

Different ratios are shown in Figure 5. External reference (PC0 = 10 pF) and sensor (PC1 = 10 pF, PC2 = 100 pF and PC3 = 330pF) are used. The result register RES3 (C3/Cref) is at the limit, showing '0x7FFFFFF', ratio = 16. Parasitic will not be considered to show the pure ratio.

#	Name	Results	Filter	fpp	Factor	Offset		Span	Final Result	Mean 50	Std Dev	SNR [bit]
0	C0/Cref	0800001A	none 🗸 s	-27	10p	0	AO	10p	10p	10p	0	Inf
1	C1/Cref	082F6B91	none 🧹 S	-27	1	0	AO	1	1,02315	1,02316	16,69u	15,87
2	C2/Cref	3255F53F	none 🧹 S	-27	1	0	AO	1	6,29197	6,29203	160,8u	12,6
3	C3/Cref	7FFFFFFF	none 🧹 S	-27	1	0	AO	1	16	16	13,21u	16,21

Figure 5: Example, Showing Ratios

Therefore, it is recommended to use a reference capacity in the same range as the sensor capacity.

3 Summary / Result

The measurement result depends a lot on the configuration, especially the settings for the compensation. With the right setting for the scaling factor and offset it is possible to get the expected ratio displayed in the results.

4

Copyrights & Disclaimer

Copyright Sciosense B.V. High Tech Campus 10, 5656 AE Eindhoven, The Netherlands. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by Sciosense B.V. are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. Sciosense B.V. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. Sciosense B.V. reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Sciosense B.V. for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Sciosense B.V. for each application. This product is provided by Sciosense B.V. "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

Sciosense B.V. shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Sciosense B.V. rendering of technical or other services.

5 Revision information

Table 1: Revision history

Revision	Date	Comment	Page
1	2021-12-07	First edition	All

Note(s) and/or Footnote(s):

- 1. Page and figure numbers of the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

Address: Sciosense B.V. High Tech Campus 10 5656 AE Eindhoven The Netherlands

Contact: www.sciosense.com info@sciosense.com

