

This product, formerly sold by ams AG, and before that optionally by either

Applied Sensors GmbH, acam-messelectronic GmbH or Cambridge CMOS Sensors,

is now owned and sold by

ScioSense

The technical content of this document under ams / Applied Sensors / acam-

messelectronic / Cambridge CMOS Sensors is still valid.

Contact information

Headquarters:

ScioSense B.V.

High Tech Campus 10

5656 AE Eindhoven

The Netherlands

info@sciosense.com

www.sciosense.com

mailto:info@sciosense.com

Ultrasonic-Flow-Converter
Data Sheet

TDC-GP30Y

September 19 , 2019
Document-No: DB_GP30Y_Vol2_en V0.2

System-Integrated Solution for Ultrasonic Flow Meters
Volume 2: CPU, Memory and Firmware

Utrasonic-Flow-Converter TDC-GP30

acam-messelectronic gmbh is now a member of ams group

Copyrights & Disclaimer

Copyright acam-messelectronic gmbh, Friedrich-List-Str. 4, 76297 Stutensee, Germany-Europe.

Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted,

merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by acam-messelectronic gmbh are covered by the warranty and patent indemnification

provisions appearing in its General Terms of Trade. acam-messelectronic gmbh makes no warranty,

express, statutory, implied, or by description regarding the information set forth herein. acam-

messelectronic gmbh reserves the right to change specifications and prices at any time and without

notice. Therefore, prior to designing this product into a system, it is necessary to check with acam-

messelectronic gmbh for current information. This product is intended for use in commercial applications.

Applications requiring extended temperature range, unusual environmental requirements, or high

reliability applications, such as military, medical life-support or life-sustaining equipment are specifically

not recommended without additional processing by acam-messelectronic gmbh for each application. This

product is provided by acam-messelectronic gmbh “AS IS” and any express or implied warranties,

including, but not limited to the implied warranties of merchantability and fitness for a particular purpose

are disclaimed.

acam-messelectronic gmbh shall not be liable to recipient or any third party for any damages, including

but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or

indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the

furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any

third party shall arise or flow out of acam-messelectronic gmbh rendering of technical or other services.

“Preliminary” product information describes a product which is not in full production so that full
information about the product is not yet available. Therefore, acam-messelectronic gmbh
(“acam”) reserves the right to modify this product without notice.

Support / Contact
For direct sales, distributor and sales representative contacts, visit the acam web site at:

www.acam.de www.ams.com

For technical support you can contact the acam support team: support@acam.de

or by phone +49-7244-74190.

http://www.acam.de/sales/distributors/

TDC-GP30 Vol. 2

DB_GP30Y_Vol1_en.docx V0.2 www.acam.de www.ams.com 1

Notational Conventions

Throughout the GP30 documentation, the following stile formats are used to support efficient reading

and understanding of the documents:

▪ Hexadecimal numbers are denoted by a leading 0x, e.g. 0xAF = 175 as decimal number.

Decimal numbers are given as usual.

▪ Binary numbers are denoted by a leading 0b, e.g. 0b1101 = 13. The length of a binary

number can be given in bit (b) or Byte (B), and the four bytes of a 32b word are denoted B0,

B1, B2 and B3 where B0 is the lowest and B3 the highest byte.

▪ Abbreviations and expressions which have a special or uncommon meaning within the

context of GP30 application are listed and shortly explained in the list of abbreviations, see

following page. They are written in plain text. Whenever the meaning of an abbreviation or

expression is unclear, please refer to the glossary at the end of this document.

▪ Variable names for hard coded registers and flags are in bold. Meaning and location of

these variables is explained in the datasheet (see registers CR, SRR and SHR).

▪ Variable names which represent memory or code addresses are in bold italics. Many of

these addresses have a fixed value inside the ROM code, others may be freely defined by

software. Their meaning is explained in the firmware and ROM code description, and their

physical addresses can be found in the header files. These variable names are defined by

the header files and thus known to the assembler as soon as the header files are included in

the assembler source code. Note that different variable names may have the same address,

especially temporary variables.

▪ Physical variables are in italics (real times, lengths, flows or temperatures).

Ultrasonic Flow Converter Vol. 2 TDC-GP30

2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Abbrevations

AM Amplitude measurement
CD Configuration Data

CPU Central Processing Unit
CR Configuration Register
CRC Cyclic Redundancy Check
DIFTOF,
DIFTOF_ALL

Difference of up and down ->TOF

DR Debug Register
FEP Frontend Processing
FDB Frontend data buffer
FHL
FW

First hit level
Firmware, software stored on the chip

FWC Firmware Code
FWD Firmware Data
FWD-RAM Firmware Data memory
GPIO General purpose input/output
Hit Stands for a detected wave period
HSO High speed oscillator
INIT Initialization process of ->CPU or -> FEP
IO Input/output
I2C Inter-Integrated Circuit bus
LSO Low speed oscillator
MRG Measurement Rate Generator
NVRAM, NVM Programmable Non-Volatile Memory
PI Pulse interface
PP Post Processing
PWR Pulse width ratio
R RAM address pointer of the CPU, can also stand for the addressed

register
RAA Random Access Area
RAM Random Access Memory
RI Remote Interface
ROM Read Only Memory
ROM code Hard coded routines in ROM
SHR System Handling Register
SPI Serial Peripheral Interface
SRAM Static RAM
SRR Status & Result Register
SUMTOF Sum of up and down TOF
Task Process, job
TDC Time-to-digital-converter
TOF, TOF_ALL Time of Flight
TS Task Sequencer
TM Temperature measurement
UART Universal Asynchronous Receiver & Transmitter
USM Ultrasonic measurement
Vref
X,Y,Z

Reference voltage
Internal registers of the CPU

ZCD Zero cross detection
ZCL Zero cross level

For details see the glossary in section 9.

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 3

Content

Copyrights & Disclaimer ... 1-2

1 Introduction ... 1-1

1.1 CPU & Environment .. 1-1

2 Program Area ... 2-1

3 Random Access Area (RAA) ... 3-1

3.1 RAM ... 3-2

3.2 Direct mapped register .. 3-3

3.3 NVRAM ... 3-3

4 CPU ... 4-1

4.1 Registers and Accumulators .. 4-1

4.2 CPU Flags .. 4-1

4.3 Arithmetic Operations .. 4-2

4.4 Branch Instructions .. 4-2

4.5 Instruction Set ... 4-3

4.6 Detailed Description of Commands .. 4-4

5 Libraries and pre-defined routines ... 5-1

5.1 common.h ... 5-2

6 CPU Handling ... 6-1

6.1 CPU Handling ... 6-1

7 Assembler Software .. 7-1

7.1 Assembly Programs .. 7-4

7.2 Basic Structure .. 7-6

7.3 Example 1: Simple TOF Difference via Pulse Interface ... 7-6

8 Miscellaneous ... 8-1

8.1 Bug Report .. 8-1

8.2 Last Changes .. 8-1

http://www.acam.de/

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 1-1

1 Introduction

TDC-GP30 stands for a new generation of ultrasonic flow converters. Besides an improved ToF front

end it also includes a 32-bit CPU and memory for on-chip data post-processing and, in a final stage,

the complete flow calculation. This volume 2 of TDC-GP30 datasheet describes the CPU, the

instruction set and the memory organization. Further, it describes the assembler and basics in

software development. This will enable customers to write their own programs. The description of the

general hardware and the analog front end basics is given in volume 1.

1.1 CPU & Environment

There is a 32-bit CPU in Harvard architecture integrated in TDC-GP30 which is acam proprietary

design. It is optimized for ultra-low power operation with the target to do the flow calculation. Figure

1-1 shows the memory organization and how the frontend, the CPU and the remote interface interact.

Figure 1-1

RAM
176 * 32 Bit

UART / SPI

CPU

Remote Interface

Firmware
Code

Memory

NVRAM
4096 * 8 Bit

System
Code

Memory

ROM
4096 * 8 Bit

Program Area

Random Access Area

Firmware Data

NVRAM
128 * 32 Bit

not used
16 * 32 Bit

Register Area
64 * 32 Bit

Frontend

Firmware
USER

&

Firmware
ACAM

After completion of a measurement, the frontend writes the various results for time-of-flight or

temperature, for amplitude, pulse width and voltage into the front end data buffer (FDB), which is part

of the RAM. From there, the user can read directly the raw data via the remote interface. This would

be the situation in time conversion mode.

In the case of flow meter mode, the frontend processing is followed by a CPU processing. The CPU

post-processing is activated by setting bit PP_EN in configuration register CR_MRG_TS and

CPU_REQ_EN_PP in configuration register CR_IEH.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

1-2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Figure 1-2 Flow Meter Mode

Frontend
Processing

Post
Processing

IDLE IDLE

Remote Interface Frontend CPU Remote Interface

The programmable firmware will be in a non-volatile 4k NVRAM. Additionally, many functions are

already implemented as ROM routines. The CPU uses a separate 176x32 bit RAM to do its

calculations and to write back the final results. Configuration data is stored in the register area of the

RAM and a special firmware data are in the RAM is reserved for firmware specific data.

The firmware code memory and the firmware data memory are zero static power NVRAMs. It is not

necessary to switch them down to save operation current.

The various main elements will be described in detail in the following.

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 2-1

2 Program Area

The program area consists of two memory parts:

• A 4-kbyte NVRAM, called Firmware Code Memory for re-programmable program code

• A 4-kbyte ROM, called System Code Memory with read-only program code.

The firmware code consists of:

▪ A USER part which can be programmed by customer (green colored)

▪ An optional acam part, pre-programmed by acam including general subroutines addressable

by customers. For details on this option please contact acam.

The NVRAM in GP30 is a combination of a volatile SRAM and a non-volatile FLASH memory. Access

to/from NVRAM is only given via the SRAM part, where volatile data can be read and written in an

unlimited number of times, while non-volatile data resides in FLASH part.

The complete data transfer from SRAM to FLASH is performed by a STORE. From FLASH to SRAM

the data are completely transferred by a RECALL. The execution of both transactions has to be

enabled first.

The Firmware Code is read protected all the time. Additionally, the GP30 has the ability of a firmware

lock, which causes:

• A write protection for Firmware Code

• A read protection for Firmware Data

• A read protection for Configuration Register

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

2-2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

The available size of USER

Firmware (FWU) is defined in

register SRR_FWU_RNG which can

be read by customer. The USER

firmware has also a 4-byte reserved

area at the end of the code memory,

which can be used to implement a

revision number. The revision can

be read via register

SRR_FWU_REV. Additionally the

revision of ACAM firmware can be

read via SRR_FWA_REV.

The code in the ROM memory (read-

only) includes system subroutines

like bootloader, checksum

generation and general subroutines

which are also addressable by

customer. It also handles the initial

check of CPU requests set in

SHR_CPU_REQ register.

Firmware Code
USER

(FWU)

Firmware Code
ACAM

(FWA)

FWU Revision
FWU_RNG

0x0000

0x0FFF

Firmware Code Memory

Common
ROM

Subroutines

Checksum
Generation

Bootloader

ROM Check of CPU
Request

0xFFFF

0xF000

0xF033

0xFDE8

0xFF14

0xFF77

0xF03C

0xFDE7

System Code Memory

The bootloader is always requested after a system reset has been occurred. However, bootloader

actions are only performed if the bootloader release code is set. In a final initialization the bootloader

also sets CPU request for “FW Init” and, if configured, a request for “Checksum Generation”. At

minimum the bootloader clears its request in SHR_CPU_REQ and jumps back to ROM Check of

CPU Request.

Note: For details about how to write firmware and to check it please see section 7 of the user

manual, volume 3.

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 3-1

3 Random Access Area (RAA)

The random access area can be distinguished in 3 sections:

▪ Random access memory (RAM) storing volatile firmware data and including frontend data

buffer

▪ Register area

▪ Non-volatile RAM (NVRAM) storing non-volatile firmware data

The RAA has the following structure:

IP Address DWORD Section Description RI

RAM

176*32

0x000–0x07F 128 FWV Firmware variables RW

0x080–0x087 8 FDB Frontend data buffer RW

0x088–0x09B 20 FDB /
(FWV)

Frontend data buffer /
Firmware variables

RW

0x09C–0x09F 4 FWV Firmware variables RW

0x0A0–0x0AF 16 FWV or
(TEMP)

Firmware variables or
temporary variables

RW

 0x0B0–0x0BF 16 NU not used -

Direct
Mapped
Register

0x0C0–0x0CF 16 CR Configuration registers RW

0x0D0–0x0DF 16 SHR System Handling registers RW

0x0E0–0x0EF 16 SRR Status & result registers RO

0x0F0–0x0F7 8 NU not used -

0x0F8–0x0FB 4 DR Debug registers RO

0x0FC–0x0FF 4 NU Not used -

NVRAM

128*32

0x100–0x11F 32 FWD1 Firmware data RW

0x120–0x16B 76 FWD2 Firmware data RW

0x16C–0x17A 15 CD Configuration data RW

0x17B
1 BLD_RL

S
Bootloader release code RW

0x17C 1 FWD1 Checksum RW

0x17D 1 FWD2 Checksum RW

0x17E 1 FWU Checksum RW

0x17F 1 FW_CS FWA Checksum RW

 0x180–0x1FF 128 NU Not used -

RI = Remote Interface

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

3-2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

3.1 RAM

The front end data buffer (FDB) is the area that contains the measurement data. The content

alternates for ToF and temperature measurements:

Table 3-1 FDB after TOF measurements

RAA Address Name Description

0x080 FDB_US_TOF_ADD_ALL_U Ultrasonic TOF Add All Value Up

0x081 FDB_US_PW_U Ultrasonic Pulse Width Ratio Up

0x082 FDB_US_AM_U Ultrasonic Amplitude Value Up

0x083 FDB_US_AMC_VH Ultrasonic Amplitude Calibrate Value High

0x084 FDB_US_TOF_ADD_ALL_D Ultrasonic TOF Add All Value Down

0x085 FDB_US_PW_D Ultrasonic Pulse Width Ratio Down

0x086 FDB_US_AM_D Ultrasonic Amplitude Value Down

0x087 FDB_US_AMC_VL Ultrasonic Amplitude Calibrate Value Low

0x088 to 0x08F FDB_US_TOF_0_U Ultrasonic TOF Up Value 0 to Value 7

0x090 to 0x097 FDB_US_TOF_0_D Ultrasonic TOF Down Value 0 to Value 7

Table 3-2 FDB after temperature measurements

RAA Address Name Description

0x080 FDB_TM_PP_M1 Offset Delay Compensation Value

0x081 FDB_TM_PTR_RAB_M1 PT Ref: Impedance Value

0x082 FDB_TM_PTC_CAB_M1 PT Cold: Impedance Value

0x083 FDB_TM_PTH_HAB_M1 PT Hot: Impedance Value

0x084 FDB_TM_PTR_RA_M1 PT Ref: 1st Offset resistance Value

0x085 FDB_TM_PP_M2 Offset Delay Compensation Value

0x086 FDB_TM_PTR_RAB_M2 PT Ref: Impedance Value

0x087 FDB_TM_PTC_CAB_M2 PT Cold: Impedance Value

0x088 FDB_TM_PTH_HAB_M2 PT Hot: Impedance Value

0x089 FDB_TM_PTR_RA_M2 PT Ref: 1st Offset resistance Value

0x08A FDB_TM_PTR_4W_RB_M1 PT Ref: 2nd Offset resistance Value

0x08B to 0x08E FDB_TM_PTC_4W_CA_M1 PT Cold: 1st to 4th Offset resistance Value

0x08F to 0x092 FDB_TM_PTH_4W_HA_M1 PT Hot: 1st to 4th Offset resistance Value

0x093 FDB_TM_PTR_4W_RB_M2 PT Ref: 2nd Offset resistance Value

0x094 to 0x097 FDB_TM_PTC_4W_CA_M2 PT Cold: 1st to 4th Offset resistance Value

0x098 to 0x09B FDB_TM_PTH_4W_HA_M2 PT Hot: 1st to 4th Offset resistance Value

For details about the FDB please refer to volume 1.

The firmware variables area (FWV) can be used by the firmware for temporarily data storage.

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 3-3

3.2 Direct mapped register

This section contains the configuration registers CR that define the operation of the chip. After a

system reset, the content is copied from configuration data (CD) in the NVRAM into this RAM cells.

Further, in this section there are the system handling registers as well as the status and result

registers.

For debugging purposes also the ALU registers and flags can be read there (read only).

For details about the RAM and the please refer to volume 1.

3.3 NVRAM

This section is a combination of a volatile SRAM and a non-volatile FLASH memory.

After a system reset, the configuration data (CD) in the NVRAM is copied into the configuration

register (CR) by the bootloader if the bootloader release code (BLD_RLS = 0xABCD_7654) is set.

Finally, there are four checksums. Those registers contain the nominal values for the user firmware,

the acam firmware and the two firmware data sections. A checksum execution will generate the

actual GP30 checksums and compare them with those in FWD1, FWD2, FWU and FWA. The

checksum execution is done typically after the bootloader, by the checksum timer (register

CR_MRG_TS : TS_CST) or by a remote command. In case of discrepancies error flags will be set

for each section (register CR_IEH).

http://www.acam.de/

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-1

4 CPU

Figure 4-1 shows in detail how the CPU is structured and implemented. It has access to the RAM,

including the result registers and the status registers.

Figure 4-1

RAM
176 * 32 Bit

Program Area

Random Access Area (RAA)

Firmware Data

NVRAM
128 * 32 Bit

not used
16 * 32 Bit

Register Area
64 * 32 Bit

32

Instruction Decoder

Program
Counter

PC Stack
8 x

not used

0x1000 – 0xEFFF

Firmware
Code

Memory

NVRAM
4096 * 8 Bit

0x0000 – 0x0FFF

ROM Code
Memory

ROM
4096 * 8 Bit

0xF000 – 0xFFFF

ALU

Start/Stop
Control

CPU Core

RAA
Address
Pointer

ZSOC

X-Reg Y-Reg Z-REG
0x000

0x0B0

0x0C0

0x100

0x17F

R-Reg 32

Watchdog

EEPROM
Interface

Peripherals

CPU Peripherals

from
instruction
decoder

9

16

32

8

32 32

4.1 Registers and Accumulators

The 32 bit-CPU operates on three internal registers, the X, Y, and Z-accumulators, and on one

register or RAM cell, addressed by the CPU’s RAM address pointer. The lat ter register is denoted

with R, it can be any accessible cell within the RAA address range. R is handled in the same way as

an accumulator by most commands. One specialty of R is the byte coding and decoding by the

bytesel and bytedir command, which only acts on R in read direction (details see below). This

function is built in for simplified and accelerated byte operations.

4.2 CPU Flags

The CPU uses four flags to classify the results of operations: Carry (C), equal Zero (Z), Sign (S) and

Overflow (O). Zero and Sign flags are set with each CPU write access to any register, RAM or

accumulator. Additionally, the Carry and Overflow flags are set in case of a calculation, shift or

rotation. Flags which are not actively changed by an operation remain in their former state. It is

possible to query each flag in a jump or skip instruction.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

4.2.1 Carry (C)

Shows the carry over in an addition or subtraction. Note that the carry flag is calculated assuming

unsigned binary numbers, in contrast to the overflow flag. Thus it may produce confusing results,

refer to the detail description of instructions for usage. With shift operations (shiftL, shiftR, rotL,

shiftR.), the carry flag is set to the (last) bit that has been shifted out.

4.2.2 Overflow (O)

Indicates an overflow during an addition or subtraction of two numbers in two‘s complement

representation. This is strictly an overflow for positive numbers, underflow in case of negative

numbers is not indicated. If the eventuality of a negative underflow can’t be avoided, additional

calculations to indicate the underflow are required.

4.2.3 Zero (Z)

The zero flag indicates if the last number written into a register (by add, sub, move, swap, etc.) was

zero or not equal to zero.

4.2.4 Sign (S)

The sign flag indicates if the last number written into a register (by add, sub, move, swap, etc.) has

the highest bit (MSB) set to 1 or to 0. It thus indicates the sign of this number, with zero indicated

positive. The sign flag assumes a two’s complement number representation.

4.3 Arithmetic Operations

An arithmetic command processes two of the registers X, Y, Z or R, and writes back the result into

the first mentioned register (or, for commands with 64 bit results, into both). These operations also

affect flags of the CPU. In particular, the carry (C) and overflow (O) flags should be checked to

ensure correctness of the last operation.

All arithmetic operations process a 32 bit wide input, (mostly) based on the common two’s

complement operations. This means that the MSB (the most significant bit of the binary word, here

bit 31) defines the sign of the binary number, with negative signs having MSB=1. Number values of

positive numbers are as usual, while the value of a negative number A follows the rule |A| = NOT(A)

+1 , in words: negative numbers are converted into positives by bitwise inversion, and then adding 1

(see the instructions “compl” and “invert”)

4.4 Branch Instructions

There are 4 principles of jumping within the code:

Goto: Jumps with relative or absolute addressing. Within an address vicinity of

–128 to +127, the assembler automatically uses relative addressing (“Branch”). For wide distances,

absolute addressing within the whole address space of 64 kB is automatically used (“Jump”). The

latter is more flexible, but needs one code byte more.

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-3

Jsub: Absolute or relative jump, used to call a subroutine. The difference to goto is that the code

returns to the calling address at jsubret (for example at the end of the subroutine). The CPU keeps

up to 8 calling addresses in its address stack. When no return to the calling address is desired, it is

better (and of course possible) to use goto instead of jsub.

Skip: Suppress the execution of the next 1, 2 or 3 instructions. Note that the skipped instructions are

in fact processed, but they produce no result or further activity. Thus skip does not save processing

time of the skipped instructions, in contrast to goto or jsub. However, the skip command itself is only

one byte short, and in addition it is highly suitable for structured programming.

Goto and skip come in different flavors, as unconditional command as well as controlled by some bit

or CPU flag. Refer to the detail instruction list below for details.

4.5 Instruction Set

The complete instruction set of the GP30 consists of 70 core instructions that have unique op-codes

decoded by the CPU. It is widely identical to the instruction set of acam’s PSØ9 chip. Table 4-1 gives

an overview of all available expressions, details are given further below.

Table 4-1: Instruction set overview

Logic Simple
Arithmetic

Complex
Arithmetic

Shift & Rotate Bitwise

and abs div rotl bitclr

eor add divmod rotR bitinv

eorn compare mult shiftL bitset

invert compl

shiftR

nand decr Flags Registerwise

nor incr clrC clear

or sign getflag move

 sub setC swap

RAM access Jsub Jump Skip Miscellaneous

bytedir jsub goto skip clkmode

bytesel jsubret gotoBitC skipBitC clrwdt

decramadr gotoBitS skipBitS equal

getramadr gotoCarC skipCarC equal1

incramadr gotoCarS skipCarS i2cclk

ramadr gotoEQ skipEQ i2creq

 gotoNE skipNE i2crw

 gotoNeg skipNeg mcten

 gotoOvrC skipOvrC nop

 gotoOvrS skipOvrS revfwa

 gotoPos skipPos revfwu

 stop

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-4 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

4.6 Detailed Description of Commands

The following description lists every GP30 instruction which is recognized by the assembler. Most of

them directly correspond to an op-code, which is a sequence of bytes in an executable code for

GP30, as it is produced by the assembler. The tabular lines have the following meaning and usage:

Command Short Description

Syntax: Command name, followed by parameters p1, p2, p3…

Parameters: Description of parameters. They may be registers REG [x, y, z, r] or numbers
in a given range.

Calculus: Mathematical operation in Verilog notation (uncommon syntax is explained in
case). This line also defines the result output, which is most of the time
simply p1. Note that this means that the content of p1 is changed by the
operation.

Flags affected: Some or all of the flags C (carry), Z (Zero), S (sign) and O (Overflow) are
affected by the described operation, according to the result

Bytes: Length of the complete op-code, including parameter designation

Cycles: Number of calculation cycles needed by the CPU

Description: Literal description an remarks on the operation

Category: One of the categories in the overview

There are some more expressions used in the list:

• PC: The program counter; this is actually the code address where the next CPU op-code is

read.

• JUMPLABEL: Label for a jump destination, which becomes an actual code address after

code assembly. In assembler code, this is usually a placeholder for a position within the

code, it may also be a fixed number (not recommended). To define a jump destination by a

jump label in assembler code, write the label followed by a colon. Labels must be followed by

an instruction. Add one nop if the label would be followed directly by ORG.

• LSB: Least significant bit, the rightmost bit of a binary number

• MSB: Most significant bit, the leftmost bit of a binary number. In the common two’s

complement representation, the MSB is used to indicate the sign of a number; MSB = 1

defines a negative number.

• “>>” or “<<”: right shift and left shift, e.g. “1<<p2”: a 1 shifted left by p2 bit positions

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-5

4.6.1 List of instructions

In the following there is a list of all CPU instructions in alphabetic order.

abs Absolute value of register

Syntax: abs p1

Parameters: p1 = REG [x, y, z, r]

Calculus: p1 = | p1 |

Flags affected: C O Z S

Bytes: 2

Cycles: 2

Description: Absolute value of register

Category: Simple arithmetic

add Addition

Syntax: add p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p1 + p2

Flags affected: C O Z S

Bytes: 1 (p2 = REG)
5 (p2 = number)

Cycles: 1 (p2 = REG)
5 (p2 = number)

Description: Addition of two registers or addition of a constant to a register

Category: Simple arithmetic

and Logic AND

Syntax: and p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p1 AND p2 in the resulting bit sequence in p1, a bit is 1 when the
 corresponding bits of P1 and P2 are both equal to 1

Flags affected: Z S

Bytes: 2 (p2 = REG)
6 (p2 = number)

Cycles: 3 (p2 = REG)
7 (p2 = number)

Description: Bitwise logic AND of 2 registers or Logic AND of register and constant

Category: Logic

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-6 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

bitclr Clear single bit

Syntax: bitclr p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = number 0 to 31

Calculus: p1 = p1 and not (1<<p2) “1<<p2”: a “1” shifted left by p2 bit positions

Flags affected: Z S

Bytes: 2

Cycles: 2

Description: Clear the single bit on position p2 in the destination register p1, other bits
remain unchanged

Note: Don’t use on register R in combination with bytesel ≠ 0

Category: Bitwise

bitinv Invert single bit

Syntax: bitinv p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = number 0 to 31

Calculus: p1 = p1 XOR (1<<p2) “1<<p2”: a “1” shifted left by p2 bit positions

Flags affected: Z S

Bytes: 2

Cycles: 2

Description: Invert the single bit on position 1<<p2 in the destination register p1, other bits
remain unchanged

Note: Don’t use on register R in combination with bytesel ≠ 0

Category: Bitwise

bitset Set single bit

Syntax: bitset p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = number 0 to 31

Calculus: p1 = p1 OR (1<<p2) “1<<p2”: a “1” shifted left by p2 bit positions

Flags affected: Z S

Bytes: 2

Cycles: 2

Description: Set the single bit on position p2 in the destination register p1, other bits
remain unchanged

Note: Don’t use on register R in combination with bytesel ≠ 0

Category: Bitwise

bytedir Define configuration for bytesel

Syntax: bytedir p1

Parameters: p1 = number 0 or 1

Calculus: -

Flags affected: -

Bytes: 1

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-7

Cycles: 1

Description: Basic definition for the configuration of bytesel (see description of bytesel)
p1 = 0 : align read data at LSB
p1 = 1 : shift read byte(s) to various positions
Important remarks:

▪ Bytedir permanently sets the read configuration until it is changed.
▪ Bytedir is not affected by any conditional or unconditional skip

command. Usage within the range of any skip command is not
permitted.

Category: RAM access

bytesel Define RAM reading mode

Syntax: bytesel p1

Parameters: p1 = number 0 to 7

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: Read from addressed register R using a byte-oriented shift operation in
various configurations. The bytesel command is implemented to simplify
bytewise operations, for example read and write from an external EEPROM,
or internal selection of coefficients which are shorter than 32 Bit. It actually
provides a means for fast bytewise shifting.
Denoting the four bytes in the 32-Bit word in R by B3/B2/B1/B0, the following
content of R is actually read, depending on the last bytedir setting:

After “bytedir 0” (or without using bytedir):
p1 = 0 : R is read as B3/B2/B1/B0 (default setting, no shifts)
p1 = 1 : R is read as 00/00/B2/B1
p1 = 2 : R is read as 00/00/B1/B0
p1 = 3 : R is read as 00/00/B3/B2
p1 = 4 : R is read as 00/00/00/B0
p1 = 5 : R is read as 00/00/00/B1
p1 = 6 : R is read as 00/00/00/B2
p1 = 7 : R is read as 00/00/00/B3

After “bytedir 1”:
p1 = 0 : R is read as B3/B2/B1/B0 (default setting, no shifts)
p1 = 1 : R is read as 00/B1/B0/00
p1 = 2 : R is read as 00/00/B1/B0
p1 = 3 : R is read as B1/B0/00/00
p1 = 4 : R is read as 00/00/00/B0
p1 = 5 : R is read as 00/00/B0/00
p1 = 6 : R is read as 00/B0/00/00
p1 = 7 : R is read as B0/00/00/00

Important remarks:

▪ Bytesel affects the read direction for any register addressed as R. Any
read access to R is affected, so the content of R for any operation is
configured according to the list above.

▪ Bytesel has no effect in write direction.
▪ Bytesel permanently sets the read configuration until it is changed.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-8 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

▪ Bytesel is not affected by any conditional or unconditional skip
command. Usage within the range of any skip command is not
recommended.

▪ Note that the commands bitset, bitclr or bitinv and shiftL, shiftR, rotL
and rotR include read access. Set bytesel = 0 before applying one of
these commands to R, to avoid undefined results.

Category: RAM access

clear Clear register

Syntax: clear p1

Parameters: p1 = REG [x, y, z, r]

Calculus: p1 = 0

Flags affected: Z S

Bytes: 1

Cycles: 1

Description: Clear addressed register to 0

Category: Registerwise

clkmode Clock mode

Syntax: clkmode p1

Parameters: p1 = number 0 or 1

Calculus: -

Flags affected: -

Bytes: 2

Cycles: 2

Description: p1 = 0 : CPU clock is the internal oscillator
p1 = 1 : CPU clock is 2 MHz, derived from the high speed clock (HSC)
Remark:

▪ clkmode sets the clock mode permanently until the next change or
until stop. After stop or after power up, clkmode is 0.

▪ Is not affected by any conditional or unconditional skip command.
Usage within the range of any skip command is not permitted.

Category: Miscellaneous

clrC Clear flags

Syntax: clrC

Parameters: -

Calculus: -

Flags affected: C O

Bytes: 2

Cycles: 2

Description: Clear Carry and Overflow flags

Category: Flags

clrwdt Clear watchdog

Syntax: clrwdt

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-9

Parameters: -

Calculus: -

Flags affected: -

Bytes: 2

Cycles:

Description: Clear watchdog. This instruction is used to restart the watchdog timer at the
end of a program run. Apply clrwdt right before ‚stop‘ to avoid a reset by the
watchdog, if enabled.

Category: Miscellaneous

compare Compare two values

Syntax: compare p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: no register change; only the flags are set to the result of the operation
p2 - p1

Flags affected: C O Z S

Bytes: 1 (p1 = REG, p2 = REG)
5 (p1 = REG, p2 = number)

Cycles: 1 (p1 = REG, p2 = REG)
5 (p1 = REG, p2 = number)

Description: Comparison of the two inputs by subtraction. The flags are changed
according to the subtraction result, but not the register contents themselves.

Category: Simple arithmetic

compl Complement

Syntax: compl p1

Parameters: p1 = REG [x, y, z, r]

Calculus: p1 = - p1 = (NOT p1) + 1

Flags affected: Z S

Bytes: 2

Cycles: 2

Description: two‘s complement of register

Category: Simple arithmetic

decr Decrement

Syntax: decr p1

Parameters: p1 = REG [x, y, z, r]

Calculus: p1 = p1 – 1

Flags affected: C O Z S

Bytes: 1

Cycles: 1

Description: Decrement register by 1

Category: Simple arithmetic

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-10 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

decramadr Decrement RAM address pointer

Syntax: decramadr

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: Decrement RAM address pointer by one

Category: RAM access

div Signed division 32 Bit

Syntax: div p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r]

Calculus: p1 = (p1 << 32) / p2 “p1<<32”: p1 shifted left by 32 bit positions
or p1 = p1*232/ p2 in standard notation
condition for correct calculation: |p1| < |2*p2|
In consequence, the result integers in p1 are between -0.5*232 and 0.5*232

Flags affected: Z and S according to the result in p1

Bytes: 2

Cycles: 38

Description: Signed division of 2 registers: 32 fractional bits of the division of 2 registers
are assigned to p1; p2 remains unchanged

Category: Complex arithmetic

divmod Signed modulo division

Syntax: divmod p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r]

Calculus: p1 = integer (p1 / p2)
p2 = p1 % p2 “%” is the modulo operation

Flags affected: Z and S according to the result in p1

Bytes: 2

Cycles: Similar to div

Description: Signed modulo division of 2 registers, 32 higher bits of the integer division of
2 registers, result is assigned to p1; the remainder is assigned to p2

Category: Complex arithmetic

eor Exclusive OR

Syntax: eor p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p1 XOR p2 in the resulting bit sequence in p1, a bit is 0 when the
 corresponding bits of P1 and P2 are equal, or 1 otherwise

Flags affected: Z S

Bytes: 2 (p1 = REG, p2 = REG)

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-11

6 (p1 = REG, p2 = number)

Cycles: 3 (p1 = REG, p2 = REG)
7 (p1 = REG, p2 = number)

Description: Bitwise Logic exclusive OR (antivalence) of the two given parameters

Category: Logic

eorn Exclusive NOR

Syntax: eorn p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p1 XNOR p2 in the resulting bit sequence in p1, a bit is 1 when the
 corresponding bits of P1 and P2 are equal, or 0 otherwise

Flags affected: Z S

Bytes: 2 (p1 = REG, p2 = REG)
6 (p1 = REG, p2 = number)

Cycles: 3 (p1 = REG, p2 = REG)
7 (p1 = REG, p2 = number)

Description: Bitwise Logic, exclusive not OR (equivalence) of the two given parameters

Category: Logic

equal Write 3 given Bytes to the executable code

Syntax: equal p1

Parameters: p1 = 3-Byte string

Calculus: -

Flags affected: -

Bytes: 3

Cycles: 3 (or more if an executable command was written)

Description: This instruction is recognized by the assembler. It writes exactly the three
bytes given in p1 to the executable code. This can be used to add customized
information like version numbers. Handle with care, since the bytes will be
interpreted as code when the PC points to them.
Important Note:
Has unpredictable effects under the influence of any conditional or
unconditional skip command. Usage within the range of any skip command is
not permitted.

Category: Miscellaneous

equal1 Write 1 given Bytes to the executable code

Syntax: equal1 p1

Parameters: p1 = Byte string

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1 (or more if an executable command was written)

Description: This instruction is recognized only by the assembler. It writes exactly the one
byte given in p1 to the executable code. This can be used to add customized

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-12 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

information like version numbers. Handle with care, since the byte will be
interpreted as code when the PC points to it.
Important Note:
Has unpredictable effects under the influence of any conditional or
unconditional skip command. Usage within the range of any skip command is
not permitted.

Category: Miscellaneous

getflag Set S and Z flags

Syntax: getflag p1

Parameters: p1 = REG [x, y, z, r]

Calculus: Signum flag S is set if p1 < 0
Zero flag Z indicates Zero if p1 = 0

Flags affected: Z S

Bytes: 1

Cycles: 1

Description: Set the signum and zero flag according to the addressed register, content of
the register is not affected

Category: Simple arithmetic

getramadr Set RAM address pointer to the value in Z

Syntax: getramadr

Parameters: - The input address is always taken from Z

Calculus: RAM address pointer = Z

Flags affected: -

Bytes: 1

Cycles: 1

Description: Set the RAM address pointer to the value given in Z

Category: RAM access

goto jump without condition

Syntax: goto p1

Parameters: p1 = JUMPLABEL

Calculus: PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump without condition. Program counter (PC) is set to target address. The
target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-13

gotoBitC Jump on bit clear

Syntax: gotoBitC p1, p2, p3

Parameters: p1 = REG [x, y, z, r]
p2 = number [0...31]
p3 = JUMPLABEL or number

Calculus: if (bit p2 of register p1 == 0) if ((1<<p2 and p1) == 0)
 PC = p3

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on bit clear. Program counter (PC) is set to target address if selected
bit p2 in register p1 is clear. The target address is given by using a jump label
or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoBitS Jump on bit set

Syntax: gotoBitS p1, p2, p3

Parameters: p1 = REG [x, y, z, r]
p2 = number [0..31]
p3 = JUMPLABEL or number

Calculus: if (bit p2 of register p1 == 1) if ((2p2 AND p1) == 1) …
 PC = p3

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on bit set. Program counter (PC) is set to target address if selected bit
p2 in register p1 is set. The target address is given by using a jump label or
by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoCarC Jump on carry clear

Syntax: gotoCarC p1

Parameters: p1 = JUMPLABEL or number

Calculus: if (carry is clear)
PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on carry clear. Program counter (PC) is set to target address if the last
operation that affected the carry (C) flag left it clear.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-14 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoCarS Jump on carry set

Syntax: gotoCarS p1

Parameters: p1 = JUMPLABEL or number

Calculus: if (carry is set)
 PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on carry set. Program counter (PC) is set to target address if the last
operation that affected the carry (C) flag left it set.
The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoEQ Jump on equal zero

Syntax: gotoEQ p1

Parameters: p1 = JUMPLABEL or number

Calculus: if (Z indicates zero)
 PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on equal zero. Program counter (PC) is set to target address if the last
operation that affected the zero (Z) flag indicated a zero result.
The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoNE Jump on not equal zero

Syntax: gotoNE p1

Parameters: p1 = JUMPLABEL or number

Calculus: if (Z indicates not-equal zero)
 PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on not-equal zero. Program counter (PC) is set to target address if the
last operation that affected the zero (Z) flag indicated a not-equal zero result.

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-15

The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoNeg Jump on negative

Syntax: gotoNeg p1

Parameters: p1 = JUMPLABEL or number

Calculus: if (S indicates negative)
 PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on negative. Program counter (PC) is set to target address if the last
operation that affected the sign (S) flag indicated a result below 0.
The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoOvrC Jump on overflow clear

Syntax: gotoOvrC p1

Parameters: p1 = JUMPLABEL or number

Calculus: if (O is clear)
 PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on overflow clear. Program counter (PC) is set to target address if the
last operation that affected the overflow (O) flag indicated no overflow.
The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoOvrS Jump on overflow set

Syntax: gotoOvrS p1

Parameters: p1 = JUMPLABEL

Calculus: if (O is set)
 PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on overflow set. Program counter (PC) is set to target address if the
last operation that affected the overflow (O) flag indicated an overflow.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-16 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

gotoPos Jump on positive

Syntax: gotoPos p1

Parameters: p1 = JUMPLABEL or number

Calculus: if (S indicates positive)
 PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump on positive. Program counter (PC) is set to target address if the last
operation that affected the sign (S) flag indicated a result equal or above 0.
The target address is given by using a jump label or by an absolute number.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jump

The following three I2C instructions are very basic and listed for the sake of completeness only.
The user is asked to access the ready-made ROM routines as described in section 5.1.1.

i2cclk I2C clock

Syntax: i2cclk

Description: Triggers the simplified I2C-interface
Is not affected by any conditional or unconditional skip command. Usage
within the range of any skip command is not permitted.

i2creq I2C request

Syntax: i2creq p1

Parameters: p1 = number 0 or 1

Description: p1 = 0 : clears the I2C request
p1 = 1 : sets the I2C request
Is not affected by any conditional or unconditional skip command. Usage
within the range of any skip command is not permitted.

i2crw I2C read / write

Syntax: i2crw p1

Parameters: p1 = number 0 or 1

Description: p1 = 0 : I2C write
p1 = 1 : I2C read
Is not affected by any conditional or unconditional skip command. Usage
within the range of any skip command is not permitted.

incr Increment

Syntax: incr p1

Parameters: p1 = REG [x, y, z, r]

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-17

Calculus: p1 = p1 + 1

Flags affected: C O Z S

Bytes: 1

Cycles: 1

Description: Increment register by one

Category: Simple arithmetic

incramadr Increment RAM address

Syntax: incramadr

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: Increment RAM address pointer by 1

Category: RAM access

invert Bitwise inversion

Syntax: invert p1

Parameters: p1 = REG [x, y, z, r]

Calculus: p1 = NOT p1

Flags affected: Z S

Bytes: 2

Cycles: 2

Description: Bitwise inversion of register

Category: Logic

jsub Unconditional jump to a subroutine

Syntax: jsub p1

Parameters: p1 = JUMPLABEL or number

Calculus: PC = p1

Flags affected: -

Bytes: 2 (relative jump) see section “branch instructions”
3 (absolute jump)

Cycles: 3 (relative jump) see section “branch instructions”
4 (absolute jump)

Description: Jump to subroutine without condition. The program counter is loaded by the
address given through the parameter. The subroutine is processed until the
keyword ‚jsubret‘ occurs. Then a jump back is performed and the next
command after the jsub instruction is executed. Jsub needs temporarily a
place in the program counter (PC) stack to remember the return address. The
PC stack has a depth of 8, so jsub works for up to 8 nested calls.
Jump range: 0 to 4095 (Firmware code) and 61440 to 65535 (ROM code)

Category: Jsub

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-18 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

jsubret Return from subroutine

Syntax: jsubret

Parameters: -

Calculus: PC = PC after last jsub operation

Flags affected: -

Bytes: 1

Cycles: 3

Description: Return from subroutine. A subroutine called via ‚jsub‘ has to be exited by
using jsubret. The program is continued at the next command following the
calling jsub instruction. The address for continuing is stored in the program
counter (PC) stack, which has a depth of 8. This means, the combination
jsub-jsubret can be used for up to 8 nested calls.

Category: Jsub

mcten Enable / disable measure cycle timer

Syntax: mcten p1

Parameters: p1 = number 0 or 1

Calculus: -

Flags affected: -

Bytes: 2

Cycles: 2

Description: p1 = 0 : Measure cycle timer disabled
p1 = 1 : Measure cycle timer enabled
Remark:

▪ Is not affected by any conditional or unconditional skip command.
Usage within the range of any skip command is not permitted.

Category: Miscellaneous

Move Move

Syntax: move p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-bit number

Calculus: p1 = p2

Flags affected: Z S

Bytes: 1 (p1 = REG, p2 = REG)
5 (p1 = REG, p2 = number)

Cycles: 1 (p1 = REG, p2 = REG)
5 (p1 = REG, p2 = number)

Description: Move content of p2 to p1 (p1 = REG, p2 = REG)
Move constant to p1 (p1 = REG, p2 = number)

Category: Registerwise

mult Signed 32-Bit multiplication

Syntax: mult p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r]

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-19

Calculus: p1, p2 = p1 * p2 the 32-bit numbers p1 and p2 are multiplied to a 64-bit
 result witch is stored in p1 (upper 32 bits and sign) and p2 (lower 32 bits)

Flags affected: Z and S according to p1

Bytes: 2

Cycles: 38

Description: Signed multiplication of two registers. Higher 32 bits of the multiplication
result are placed to p1; lower 32 bits of the multiplication result are placed to
p2.
Note that the sign of the whole number is defined through the MSB of p1,
while the MSB of p2 is just bit 31 of the result (p2 is unsigned). This can lead
to misinterpretation by subsequent operations which assume signed numbers.

Category: Complex arithmetic

nand Logic NAND

Syntax: nand p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p1 NAND p2 not (p1 AND p2); in the resulting bit sequence in p1,
 a bit is 0 when the corresponding bits of P1 and P2 are
 both equal to 1, otherwise the bit is 1

Flags affected: Z S

Bytes: 2 (p1 = REG, p2 = REG)
6 (p1 = REG, p2 = number)

Cycles: 3 (p1 = REG, p2 = REG)
7 (p1 = REG, p2 = number)

Description: Bitwise logic NAND (negated AND) of the two input parameters

Category: Logic

nop No operation

Syntax: nop

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: Placeholder code or timing adjust, no operation. May be needed sometimes to
separate two code bytes to prevent an assembler error message.

Category: Miscellaneous

nor Logic NOR

Syntax: nor p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p1 NOR p2 p1 = not (p1 OR p2); in the resulting bit sequence in p1,
 a bit is 1 when the corresponding bits of P1 and P2 are
 both equal to 0, otherwise the bit is 0

Flags affected: Z S

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-20 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Bytes: 2 (p1 = REG, p2 = REG)
6 (p1 = REG, p2 = number)

Cycles: 3 (p1 = REG, p2 = REG)
7 (p1 = REG, p2 = number)

Description: Bitwise logic NOR (negated OR) of the two input parameters

Category: Logic

or Logic OR

Syntax: or p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p1 OR p2 in the resulting bit sequence in p1, a bit is 0 when the
 corresponding bits of P1 and P2 are both equal to 0, otherwise 1

Flags affected: Z S

Bytes: 2 (p1 = REG, p2 = REG)
6 (p1 = REG, p2 = number)

Cycles: 3 (p1 = REG, p2 = REG)
7 (p1 = REG, p2 = number)

Description: Bitwise logic OR of the two input parameters

Category: Logic

ramadr Set RAM address pointer

Syntax: ramadr p1

Parameters: p1 = RAM cell name or 9-Bit number

Calculus: -

Flags affected: -

Bytes: 1 (address range 0x000 to 0x03F)
2 (any address > 0x03F)

Cycles: 1 (address range 0x000 to 0x03F)
2 (any address > 0x03F)

Description: Set pointer to RAM address (range: 0...511)

Category: RAM access

The following two routines are low-level and listed for the sake of completeness only. The user is
asked to access the ready-made ROM routines as described in section 5.1.1

revfwa Store acam firmware revision number

Syntax: revfwa

Description: Stores content of X-Register to SRR_FWA_REV
Used by FW ROM Code when bootloader is executed
Is not affected by any conditional or unconditional skip command. Usage
within the range of any skip command is not permitted.

revfwu Store user firmware revision number

Syntax: revfwu

Description: Stores content of X-Register to SRR_FWU_REV
Used by FW ROM Code when bootloader is executed

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-21

Is not affected by any conditional or unconditional skip command. Usage
within the range of any skip command is not permitted.

rotL Rotate left

Syntax: rotL p1(, p2)

Parameters: p1 = REG [x, y, z, r]
p2 = no entry or number 2..15

Calculus: case rotL p1, without p2: p1 = (p1 << 1) + carry ; carry =
MSB(p1)
 p1 = 2*p1 + carry ; carry = MSB(p1)
case rotL p1, p2: p1 = repeat (p2 times) rotL p1
 Adding carry finally lets the bits of p1 circulate left over 1 or p2 positions.

Flag affected: C O (resulting from the last rot step),
Z S (according to the final result in p1)

Bytes: 1 (p1 = REG, p2 = none)
2 (p1 = REG, p2 = number)

Cycles: 1 (p1 = REG, p2 = none)
1 + p2 (p1 = REG, p2 = number)

Description: Without p2 or p2 = 1 : Rotate p1 left by one bit position over carry. This
means in detail, shift p1 register to the left, fill LSB with present carry, then
move the former MSB to carry.
With 2 ≤ p2 ≤ 15 : Rotate p1 left by p2 bit positions over carry. This
means in detail, shift p1 register p2 times to the left, in each step fill LSB with
the present carry and then move the former MSB to carry.

Note: Don’t use on register R in combination with bytesel ≠ 0

Category: Shift and rotate

rotR Rotate right

Syntax: rotR p1(, p2)

Parameters: p1 = REG [x, y, z, r]
p2 = no entry or number 2..15

Calculus: case rotR p1, without p2: p1 = (p1 >> 1) + (carry << 31) ; carry = LSB(p1) →
Carry is shifted left to position 31, or p1 = integer (p1 / 2) + (carry*231) ; carry = LSB(p1)

case rotR p1, p2: p1 = repeat (p2 times) rotL p1
 Placing carry at MSB lets the bits of p1 circulate right over 1 or
p2 positions.

Flags affected: C O (resulting from the last rot step),
Z S (according to the final result in p1)

Bytes: 1 (p1 = REG, p2 = none)
2 (p1 = REG, p2 = number)

Cycles: 1 (p1 = REG, p2 = none)
1 + p2 (p1 = REG, p2 = number)

Description: Without p2 or p2 = 1 : Rotate p1 right by one bit position over carry. This
means in detail, shift p1 register to the right, fill MSB with present carry, then
move the former LSB to carry.
With 2 ≤ p2 ≤ 15 : Rotate p1 right by p2 bit positions over carry. This
means in detail, shift p1 register p2 times to the right, in each step fill MSB
with the present carry and then move the former LSB to carry.

Note: Don’t use on register R in combination with bytesel ≠ 0

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-22 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Category: Shift and rotate

setC Set carry flag

Syntax: setC

Parameters: -

Calculus: -

Flags affected: C O

Bytes: 2

Cycles: 2

Description: Set carry flag and clear overflow flag

Category: Flags

shiftL Shift Left

Syntax: shiftL p1(, p2)

Parameters: p1 = REG [x, y, z, r]
p2 = no entry or number 2..15

Calculus: case shiftL p1, without p2: p1 = (p1 << 1); carry = MSB(p1)
 “p1 << 1”: p1 shifted left by 1 bit, actually means p1 multiplied by 2
 in standard notation: p1 = 2 *p1 as long as MSB remains unchanged
case shiftL p1, p2: p1 = repeat (p2 times) shiftL p1
 in standard notation: p1 = p1*2p2 as long as MSB remains unchanged

Flags affected: C O (resulting from the last shift step),
Z S (according to the final result in p1)

Bytes: 1 (p1 = REG, p2 = none)
2 (p1 = REG, p2 = number)

Cycles: 1 (p1 = REG, p2 = none)
1 + p2 (p1 = REG, p2 = number)

Description: Without p2 or p2 = 1 : Unsigned Shift p1 left by one bit position, LSB set to
zero, MSB shifted out to carry. Note that this can cause fake sign changes.
With 2 ≤ p2 ≤ 15 : Unsigned Shift p1 left by p2 bit positions, b2 lower
bits set to zero, MSB of last step shifted out to carry.
Note that this operation can cause fake sign changes. Check by OVL flag

Note: Don’t use on register R in combination with bytesel ≠ 0

Category: Shift and rotate

shiftR Shift right

Syntax: shiftR p1(, p2)

Parameters: p1 = REG [x, y, z, r]
p2 = no entry or number 2..15

Calculus: case shiftR p1, without p2: p1 = (p1 >> 1); carry = LSB(p1)
 “p1 >> 1”: p1 shifted right by 1 bit, actually means p1 divided by 2
in standard notation: p1 = p1 /2 with a truncation error if LSB(p1)=1
case shiftR p1, p2: p1 = repeat (p2 times) shiftR p1
in standard notation: p1 = p1/2p2
 with some truncation error due to lost lower bits

Flags affected: C O (resulting from the last shift step),
Z S (according to the final result in p1)

Bytes: 1 (p1 = REG, p2 = none)

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-23

2 (p1 = REG, p2 = number)

Cycles: 1 (p1 = REG, p2 = none)
1 + p2 (p1 = REG, p2 = number)

Description: Without p2 or p2 = 1 : Signed Shift p1 right by one bit position, MSB
duplicated to keep sign unchanged, LSB shifted out to carry. The latter can
be used to correct a possible truncation error.
With 2 ≤ p2 ≤ 15 : Signed Shift p1 right by p2 bit positions, p2 leading
bits set to initial MSB to keep sign unchanged. Carry is set to the last LSB
shifted out, which can be used to reduce a possible truncation error.

Note: Don’t use on register R in combination with bytesel ≠ 0

Category: Shift and rotate

sign Sign

Syntax: sign p1

Parameters: p1 = REG [x, y, z, r]

Calculus: p1 = 1 = 0x00000001 if p1 >= 0
p1 = -1 = 0xFFFFFFFF if p1 < 0

Flags affected: Z S

Bytes: 2

Cycles: 2

Description: Sign of addressed register in complement of two notations.
A positive value returns 1, a negative value returns -1
Zero is assumed to be positive

Category: Simple arithmetic

skip Skip

Syntax: skip p1

Parameters: p1 = number [1, 2, 3]

Calculus: PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 instructions without conditions. The one, two or three active
instructions following the skip command produce no result, except some
instructions that may not be skipped (see below). Note that the skipped
instructions are processed, but they produce no result or further activity. Use
the skip commands (conditional or unconditional) for structured programming
or to ignore very short code sequences – for long sequences goto is more
effective.

Note: The following instructions may not be skipped:
bitclr, bitinv, bitset, bytedir, bytesel, equal, equal1, i2cclk, i2creq, i2crw,
revfwa, revfwu, clkmode, mcten

Category: Skip

skipBitC Skip on bit clear

Syntax: skipBitC p1, p2,p3

Parameters: p1 = REG [x, y, z, r]

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-24 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

p2 = number [0..31]
p3 = number [1, 2, 3]

Calculus: if (bit p2 of register p1 == 0)
PC = PC + code bytes of next p3 instructions

Flags affected: -

Bytes: 2

Cycles: 2 + cycles of the skipped commands

Description: Skip p3 commands if bit p2 of register p1 is clear. See “skip” for more details.

Category: Skip

skipBitS Skip on bit set

Syntax: skipBitS p1, p2,p3

Parameters: p1 = REG [x, y, z, r]
p2 = number[0..31]
p3 = number[1, 2, 3]

Calculus: if (bit p2 of register p1 == 1)
PC = PC + code bytes of next p3 instructions

Flags affected: -

Bytes: 2

Cycles: 2 + cycles of the skipped commands

Description: Skip p3 commands if bit p2 of register p1 is set. See “skip” for more details.

Category: Skip

skipCarC Skip carry clear

Syntax: skipCarC p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (carry == 0)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if carry clear. See “skip” for more details.

Category: Skip

skipCarS Skip carry set

Syntax: skipCarS p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (carry == 1)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if carry set. See “skip” for more details.

Category: Skip

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-25

skipEQ Skip on zero

Syntax: skipEQ p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (Z indicates zero)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if result of previous operation is equal to zero. See “skip”
for more details.

Category: Skip

skipNE Skip on non-zero

Syntax: skipNE p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (Z indicates not-equal zero)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if result of previous operation is not equal to zero. See
“skip” for more details.

Category: Skip

skipNeg Skip on negative

Syntax: skipNeg p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (S indicates negative)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if result of previous operation was smaller than 0. See
“skip” for more details.

Category: Skip

skipOvrC Skip on overflow clear

Syntax: skipOvrC p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (O is clear)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if overflow is clear. See “skip” for more details.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

4-26 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Category: Skip

skipOvrS Skip on overflow set

Syntax: skipOvrS p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (O is set)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if overflow is set. See “skip” for more details.

Category: Skip

skipPos Skip on positive

Syntax: skipPos p1

Parameters: p1 = number [1, 2, 3]

Calculus: if (S indicates positive)
PC = PC + code bytes of next p1 instructions

Flags affected: -

Bytes: 1

Cycles: 1 + cycles of the skipped commands

Description: Skip p1 commands if result of previous operation was greater or equal to 0.
See “skip” for more details.

Category: Skip

stop Stop

Syntax: stop

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: The CPU and the CPU clock are stopped. Usually this instruction is the last
command in the assembler listing, it ends any CPU activity. New activity
starts by request of the task sequencer or over external communication.
Note that the request flag that started the CPU activity must be cleared by the
CPU before stop, to indicate that this request was processed.

Category: Miscellaneous

sub Substraction

Syntax: sub p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r] or 32-Bit number

Calculus: p1 = p2 – p1

Flags affected: C O Z S

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 4-27

Bytes: 1 (p1 = REG, p2 = REG)
5 (p1 = REG, p2 = number)

Cycles: 1 (p1 = REG, p2 = REG)
5 (p1 = REG, p2 = number)

Description: Subtraction of the two parameters

Category: Simple arithmetic

swap Swap

Syntax: swap p1, p2

Parameters: p1 = REG [x, y, z, r]
p2 = REG [x, y, z, r]

Calculus: p1 = p2 and p2 = p1

Flags affected: -

Bytes: 1

Cycles: 3

Description: Swap of 2 registers. The value of two registers is exchanged between each
other.

Category: Registerwise

http://www.acam.de/

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-1

5 Libraries and pre-defined routines

GP30Y comes with a number of predefined routines in its ROM. Some of them are ready-to-use and

freely available. The ROM routines are organized in a library, defined by a so called header file which

relates routine and variable names to their call addresses and memory addresses, respectively:

• common.h General purpose routines

File “common.h” that comes with the assembler must be included in codes that use any of these

routines (use the “include” statement in the main *.asm file). The routines are called using their ROM

routine name after jsub or any goto statement. The ROM routine name is a synonym of the call

address, as defined in the header file. The call address may be used alternatively.

Some routines come in different alternative versions or with alternative start addresses. To some

extent, this allows the user to select different RAM cells for data storage. A typical example would be

a routine which needs some cells of usual RAM, and an alternative version where cells in the

firmware data (FWD) range are used instead – this second one frees up RAM space and could make

use of automated non-volatile storage, at the cost of firmware data space. Another reason for

alternative start addresses is to skip a part of the routine if some part of the preparation work is not

needed or undesired (for example when some numbers calculated at the start of the routine are

already known). The differences between the versions are explained for each routine in detail in the

subsequent sections.

Number format: As usual in fixed decimal-point arithmetic, care has to be taken to set values in the

right format. Unless differently noted, all numbers are in two’s complement (MSB determines sign).

The binary representation B_bin of a fractional number is defined with a fixed number N of fractional

binary digits, such that the corresponding decimal number B_dec is calculated as: B_dec =

Bin_into_decimal(B_bin)/2^N. Throughout this document, such a format will be labeled “ fd N” – N

fractional digits. A typical value format is fd 16, covering a fractional number range from about -

32768.0 to 32768.0 (when using 32 bit RAM cells).

The second factor to be considered in calculations is the unit, which in many cases comes with a

fixed factor, for example whenever values are related to a particular physical value. A typical

example is measured TOF time, which is always given as fd 16 in HSC periods (250 ns for 4 MHz

operation). This means, the measured Time-of-flight value in time units TOF relates to the measured

number TOF_bin as: TOF = (Bin_into_decimal(TOF_bin)/2^16) * 250 ns. Another example is the first

hit level FHL, which is given as an integer binary number FHL_bin with an LSB of about 0.88mV: FHL

= Bin_into_decimal(FHL_bin) * 0.88 mV.

Due to the internal calculation processes, the range of values which generate correct results in some

calculation is limited and depends on the format definition. For example, a multiplication of two 32 bit

numbers always generates a correct 2*32 bit result (in two words, Y and X register). But if this result

is formatted into one single word in fd 16 format (for example using ROM_FORMAT_64_to_32BIT)

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

for further calculations, the result can only be right when the leading 16 bit of the original result

where 0 (and of course, some accuracy is lost by cutting the lowest 16 bit, too). Such effects have to

be considered in any routine that deals with actual calculations. Wherever applicable, number

formats and additional range limitations are given in the subsequent routine descriptions.

5.1 common.h

The general purpose routines defined in common.h are listed in the following. Note that not all of

them can be used in the same code, depending on memory allocation. Some routines are included in

alternative versions, to enable optimized memory usage. In the following sections, the ROM routines

defined in common.h are grouped according to their usage. The table gives an overview:

Table 5-1 ROM-routines for common usage

Name Description Remarks

Filtering

ROM_INIT_FILTER Routine to initialize the RAM cells for any
filter (rolling average or median) with a
given value

ROM_ROLL_AVG Routine to filter the FILTER_IN values
using a rolling average filter

Filter length
can be
configured

ROM_ROLLAVG_OUTLIER Routine to filter the FILTER_IN values
using a rolling average filter. One value
which deviates most is always ignored.

Filter length
can be
configured

ROM_MEDIAN Routine to filter the FILTER_IN values
using a median filter

Filter length
can be
configured

ROM_FILTER_FLOW Routine to filter flow values used by acam
firmware

Filter length is
fixed N=16

Error detection and handling

ROM_EH This routine checks all error flags and
suppresses processing of wrong results.

many RAM
cells fixed

ROM_PP_AM_MON Monitor the amplitude values and check
limits to identify bad measurements

alternative
calls exist

ROM_PP_AM_CALIB This routine gets the Amplitude Calibration
values (H & L) and evaluates the gradient
and offset that can be used for calculating
the actual amplitude.

alternative
calls exist

Pulse interface and flow volume

ROM_CFG_PULSE_IF This routine configures the pulse interface
with the parameters calculated from the
given configuration.

ROM_PI_UPD Pulse Interface Update Routine

ROM_PP_PI_UPD Pulse Interface Update Routine with input
from RAM

ROM_RECFG_PULSEIF_FOROM
R_ERROR1

Reconfiguring the pulse interface outputs
GPIO0 and GPIO1 as normal GPIOs to
signal an error

ROM_SIGNAL_ERROR_ON_PUL
SEIF1

Signaling error on the pulse interface
GPIO0 and GPIO1

ROM_RECFG_PULSEIF_FOR_P
ULSE1

Configuring GPIO0 and GPIO1 as pulse
interface outputs

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-3

ROM_SAVE_FLOW_VOLUME This routine is used to store the converted
flow (in LPH), cumulatively to flow volume
in cubic meter.

alternative
versions exist

Sensor temperature measurement

ROM_TEMP_POLYNOM Calculates the temperature of a PT sensor
using a polynomial approximation

ROM_TEMP_LINEAR_FN This routine is used to calculate the
temperature of any sensor as a linear
function of sensor resistance using the
nominal resistance and sensor slope.

ROM_TM_SUM_RESULT Sums up the results of double temperature
measurements. The double measurements
are performed to eliminate the 50/60 Hz
disturbance.

Interface communication

ROM_I2C_ST I2C Start Byte Transfer Low-level
routines,
covered bythe
ones following

ROM_I2C_BT I2C Byte Transfer

ROM_I2C_LT I2C Last Byte Transfer

ROM_I2C_DWORD_WR Write 4 bytes of data to a specified
address through the I2C interface

ROM_I2C_BYTE_WR Write a single byte of data to a specified
address through the I2C interface

ROM_I2C_DWORD_RD Sequentially read 4 data bytes from the
I2C interface

ROM_I2C_BYTE_RD Sequentially read a single data byte from
the I2C interface

ROM_COPY_UART_PRB_DATA This routine is used to copy the relevant
data for the UART Master into the Probe
data area. The data is then sent over
UART interface to the master.

alternative
calls for
optimized
memory

Housekeeping

ROM_CPU_CHK Check kind of CPU request: This routine is
called by hardware design after any Post
Processing (PP) request, it is the starting
point of any CPU activity, including the
firmware call at MK_CPU_REQ.

automati-cally
started

ROM_USER_RAM_INIT Initialize the entire user RAM with 0

High speed oscillator

ROM_HSO_WAIT_SETTL_TIME This routine is used to switch on the High
speed oscillator clock and wait out its
settling time (122 us)

ROM_HSC_CALIB This routine evaluates the high speed
clock scaling factor for the 4MHz / 8 MHz
clock

ROM_SCALE_WITH_HSC Routine to scale the input parameter with
the HS Clock Calibration factor

Configuration

ROM_RESTORE_TOF_RATE Routine to reconfigure TOF_RATE
generator from a lower rate after ZERO
FLOW ends

alternative
version for free
configuration

ROM_RECFG_TOF_RATE Routine to reconfigure TOF_RATE
generator to a lower rate, depending on
the parameter N

Mathematics

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-4 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

ROM_FORMAT_64_TO_32BIT Routine to format a 64-bit value (in Y and
X) into a 32 bit result with 16 integer + 16
fractional bits. Useful for formatting 64 bit
multiplication results with 32 integer + 32
fractional bits

alternative
version: faster,
but needs tem-
porary RAM

ROM_DIV_BY_SHIFT Perform the division of a value Y by X,
where X=2^N is an integer power of two

ROM_SQRT Evaluate the square root accurately for
values in the range (196 <= X <= 5476)

ROM_LINEAR_CORRECTION Linear interpolation of a coefficient
between two sampling points

alternative
version is fixed
to interpolation
over THETA

ROM_FIND_SLOPE Used to find the slope between two points,
given the coefficient values and parameter
values at the two points.

5.1.1 ROM Routines in Detail

Data Filtering:

ROM routine name ROM_INIT_FILTER / ROM_INIT_FILTER1

Description Routine to initialize the RAM cells for any block of RAM cells of size N
and starting at a given address with a given value (use to initialize
rolling average or median filter).
The routine has an alternative start address ROM_INIT_FILTER1,
where RAM_R_V32_FILTER remains unchanged, but Y returns
undefined.

Prerequisite -

Input parameters /
register values

X: contains value to be initialised in the RAM cells (any format)
Y: Number of RAM cells to be initialised N (integer)
Z: Starting RAM Address of the filter

Output/Return value NVRAM cells starting at the address in Z are initialised with the value in
X

Temporary RAM RAM_R_V32_FILTER (remains unchanged when using
ROM_INIT_FILTER1)

Permanent RAM -

Routines used -

Unchanged registers X, Z; (Y unchanged when using ROM_INIT_FILTER)

ROM routine name ROM_ROLL_AVG

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-5

Description This routine averages a list of the last N FILTER_IN values using a
rolling average filter. With every call it removes the oldest value from
the list end and adds the new one at the beginning. Then it determines
the new average by calculating the arithmetic mean from the N list
values.
The final output value must not exceed the maximal representable
number/N in the chosen format (else overflow occurs).

Prerequisite For correct results, all N RAM cells of the filter must contain valid
values. Use ROM_INIT_FILTER once before first routine call for proper
initialization.

Input parameters /
register values

X: new value to be added to the filter list (FILTER_IN) (any format)
Y: filter length N (integer)
Z: Starting address of the rolling average filter RAM cell block of length
N

Output/Return value X: new average (same format as X input)

Temporary RAM RAM_R_V32_FILTER

Permanent RAM -

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

ROM routine name ROM_ROLLAVG_OUTLIER

Description This routine averages a list of the last N FILTER_IN values using a
rolling average filter. With every call it removes the oldest value from
the list end and adds the new one at the beginning. Then it determines
the new average by calculating the arithmetic mean from the N list
values – except the one value that deviates the most from the last
average (the OUTLIER). This one value is replaced by the previous one
(ONLY for the calculation, the original value remains in the list), in order
to filter out single error points.
The final output value must not exceed the maximal representable
number/N in the chosen format (else overflow occurs).

Prerequisite For correct results, all N RAM cells of the filter must contain valid
values. Use ROM_INIT_FILTER once before first routine call for proper
initialization.

Input parameters /
register values

X: new value to be added to the filter list (FILTER_IN) (any format)
Y: filter length N (integer)
Z: Starting address of the rolling average filter RAM cell block of length
N
RAM_R_V30_PREV_AVG with the previous averaged result

Output/Return value X: new average (same format as X input)
Z: last valid value that replaced the OUTLIER (same format as X input)
Bit BNR_NEW_VAL_IS_OUTLIER in RAM_R_FW_STATUS is set if the
current new value is then OUTLIER – to be recognized for later error
handling, for example to replace the new value by Z in other
calculations..

Temporary RAM RAM_R_V32_FILTER, RAM_R_V31_FILTER_2,

RAM_R_V33_FILTER_SUM

Permanent RAM RAM_R_FW_STATUS, RAM_R_V30_PREV_AVG

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-6 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

ROM routine name ROM_MEDIAN

Description This routine calculates the median of a list of the last N FILTER_IN
values. With every call it removes the most different value from the
ordered list and sorts the new one. Then it calculates the new median.

Prerequisite For correct results, all N RAM cells of the filter must contain valid
values. Use ROM_INIT_FILTER once before first routine call for proper
initialization.

Input parameters /
register values

X: new value to be added to the filter list (FILTER_IN) (any format)
Y: filter length N (integer)
Z: Starting address of median filter RAM cell block of length N

Output/Return value X: new median (same format as
X input)

Temporary RAM RAM_R_V32_FILTER, RAM_R_V31_FILTER_2

Permanent RAM -

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

ROM routine name ROM_FILTER_FLOW

Description Routine to filter the flow value with a rolling average filter of length 16.
The routine initializes the filter at its first call with its input value, and
calculates with each new call a new averaged flow value with the oldest
value replaced by the new input from
RAM_R_VA2_FLOW_LPH_TO_FLT.
The final output value must not exceed the maximal representable
number/16 in the chosen format (else overflow occurs).
Used by ams firmware only.

Prerequisite All 16 filter cells in RAM, starting at RAM_R_ROLAVG_1, must still
contain the former values.

Input parameters /
register values

RAM_R_VA2_FLOW_LPH_TO_FLT (any format)

Output/Return value X: averaged flow value (same format as input)
Values in 16 filter cells in RAM, starting at RAM_R_ROLAVG_1, are
shifted by one cell, dropping the oldest value at the end and storing the
new input value in RAM_R_ROLAVG_1
First call:
all 16 filter cells get initialized to RAM_R_VA2_FLOW_LPH_TO_FLT,
and Bit BNR_FLOW_FILT_INIT_DONE in RAM_R_FW_STATUS is set.

Temporary RAM -

Permanent RAM RAM_R_FW_STATUS, RAM_R_VA2_FLOW_LPH_TO_FLT,
RAM_R_ROLAVG_1, RAM_ ROLAVG_2 .. RAM_ROLAVG_16

Routines used ROM_INIT_FILTER, ROM_ROLL_AVG

Unchanged registers (all registers X, Y, Z and R are in use)

Error detection and handling:

ROM routine name ROM_EH

Description Error Handling: This routine checks all error flags and suppresses
processing of wrong results.

Prerequisite -

Input parameters /
register values

error flags in SRR_ERR_FLAG

Output/Return value error counters and flags are updated.

Temporary RAM -

Permanent RAM RAM_R_TM_ERR_CTR, RAM_R_AM_ERR_CTR,
RAM_R_USM_ERR_CTR, RAM_R_FW_STATUS,
RAM_R_PT_INT_TEMPERATURE, RAM_R_PTC_TEMPERATURE,

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-7

RAM_R_PTC_TEMPERATURE,
RAM_R_V2D_PT_INT_TEMPERATURE_OLDVAL,
RAM_R_V2B_PTC_TEMPERATURE_OLDVAL,
RAM_R_V2C_PTH_TEMPERATURE_OLDVAL,
RAM_R_FHL_ERR_CTR, RAM_R_FLOW_LPH, RAM_R_THETA,
RAM_R_V29_FLOW_LPH_OLDVAL,
RAM_R_V2A_FLOW_THETA_OLDVAL

Routines used ROM_REPLACE_WITH_OLD_TOFS

Unchanged registers Z

ROM routine names ROM_PP_AM_MON / ROM_PP1_AM_MON

Description AM monitoring: This routine reads the raw amplitude values from the
front end data buffer and checks if they are above the user given limit in
FWD_R_AM_MIN. This is done by direct comparison of FDB_US_AM_U
and FDB_US_AM_D with RAM_R_AM_MIN_RAW (provided by
ROM_PP_AM_CALIB or ROM_PP1_AM_CALIB).
The routine sets the flag BNR_AMP_VAL_TOO_LOW bit in
RAM_R_FW_ERR_FLAGS register, if any of the amplitudes is too low,
or clears it in the opposite case (sufficient signal amplitudes).
The alternative call ROM_PP1_AM_MON does not need the RAM cell
RAM_R_AM_MIN_RAW, it gets the same value from Z.

Prerequisite An AM measurement must be done before, with valid results in
FDB_US_AM_U and FDB_US_AM_D.

Input parameters /
register values

RAM_R_AM_MIN_RAW: Min. amplitude raw value in HSC periods (fd
16)
equivalent to the user’s minimum amplitude limit FWD_R_AM_MIN in
mV.
 or alternatively, with ROM_PP1_AM_MON, use Z instead as input:
Z: Minimal. amplitude raw value in HSC periods (as above) (fd 16)

Output/Return value BNR_AMP_VAL_TOO_LOW in RAM_R_FW_ERR_FLAGS register

Temporary RAM -

Permanent RAM RAM_R_FW_ERR_FLAGS
 only ROM_PP_AM_MON: RAM_R_AM_MIN_RAW

Routines used -

Unchanged registers X, Y

ROM routine name ROM_PP_AM_CALIB / ROM_PP1_AM_CALIB

Description These routines are used after an amplitude calibration measurement.
Using the new amplitude calibration values (FDB_US_AMC_VH and
FDB_US_AMC_VL), they calculate gradient RAM_R_AMC_GRADIENT
and offset RAM_R_AMC_OFFSET that are needed for calculating actual
amplitudes (this is not done here, see manual for equations).
In addition, they scale the amplitude limit FWD_R_AM_MIN into an
equivalent raw value RAM_R_AM_MIN_RAW, which can be directly
compared to measured time values. This avoids frequent multiplications
or divisions. Note that all calculated values change slowly over time, so
they need to be updated rarely, but regularly.
The routine ROM_PP_AM_CALIB uses a hard-coded typical AM
amplitude value of 350mV as reference. The alternative call
ROM_PP1_AM_CALIB has an input cell from firmware data
(FWD_R_VCAL_TYP) instead, such that the voltage reference can be
adapted if necessary.
Applied formulae:
 RAM_R_AMC_GRADIENT =
 VCAL/ (FDB_US_AMC_VH - FDB_US_AMC_VL)
 RAM_R_AMC_OFFSET = (2 * FDB_US_AMC_VL -
FDB_US_AMC_VH)

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-8 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

 * RAM_R_AMC_GRADIENT
 (note: for subsequent amplitude calculations,
RAM_R_AMC_OFFSET
 must be further corrected outside the routine:
 offset = RAM_R_AMC_OFFSET +(SHR_ZCD_LVL - 796)*0.9V/1024
)
 RAM_R_AM_MIN_RAW = (FWD_R_AM_MIN + AMC_OFFSET +
 AM_CORR_FACTOR) / AMC_GRADIENT
 AM_CORR_FACTOR= (SHR_ZCD_LVL - 796) * 0.9V /1024
 SHR_ZCD_LVL is the current zero cross detection level (LSB

0.88mV).

Prerequisite AM calibration measurements must be done before, with valid results in
FDB_US_AMC_VH and FDB_US_AMC_VL. The zero cross detection
level SHR_ZCD_LVL must be adjusted. All these parameters are
assumed to change slowly enough to be considered constant between
two AM calibrations.

Input parameters /
register values

FWD_R_AM_MIN: User given lower amplitude limit in mV (fd 16)
 only ROM_PP1_AM_CALIB:
 FWD_R_VCAL_TYP: reference amplitude in mV
(integer)

Output/Return value X = RAM_R_AM_MIN_RAW in HSC periods:
(fd 16)
 raw lower amplitude limit for direct measurement comparison
Y = RAM_R_AMC_GRADIENT in mV/HSC period, (fd 16)
RAM_R_AMC_OFFSET in mV:
(fd 16)
 parameters for calculation of amplitudes in mV from
 FDB_US_AM_U and FDB_US_AM_D (use raw values in HSC
periods)

Temporary RAM RAM_R_VA9_AMC_DIFF

Permanent RAM FWD_R_AM_MIN, RAM_R_AM_MIN_RAW, RAM_R_AMC_GRADIENT,
RAM_R_AMC_OFFSET;
 only ROM_PP1_AM_CALIB: FWD_R_VCAL_TYP

Routines used ROM_FORMAT1_64_TO_32BIT

Unchanged registers (all registers X, Y, Z and R are in use)

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-9

Pulse interface and flow volume:

ROM routine name ROM_CFG_PULSE_IF

Description This routine configures the pulse interface with the parameters
calculated from the given configuration. The routine thus prepares the
use of ROM_PI_UPD for flow output over the pulse interface. The
implemented configuration aims at generating not more than one pulse
per auto update, to prevent multiple pulses.

Prerequisite -

Input parameters /
register values

X : Number of pulses per liter (PULSE_PER_LITER)
(integer)
Y : Maximum flow in liter per hour (MAX_FLOW) (integer)
Z : MEAS_RATE_INV = ((TS_CM + 1) * TS_CT * TOF_RATE) /
 (1000 + (LP_MODE*24)) (fd 16)
 - TS_CM : Cycle mode (Task sequencer)
 - TS_CT: Cycle time (Task sequencer)
 - TOF_RATE: Time of Flight Rate
 - LP_MODE: Low Power Mode (accounts for change in task
sequencer
 period in low power mode from 1ms to 1000/1024ms)
 LP_MODE - Low Power Mode

Output/Return value Pulse interface registers SHR_PI_AU_NMB, SHR_PI_AU_TIME,
SHR_PI_TPA and the PI_TPW bits in CR_PI are configured.
X: FLOW_SCALE_FACT
 = PULSE_PER_LITER*MEAS_RATE_INV (fd 16)
The FLOW_SCALE_FACT is used to be multiplied with the actual flow
(l/h) for updating the pulse interface. It is typically applied by moving it
to RAM_R_FLOW_SCALE_FACT before calling ROM_PI_UPD.

Temporary RAM RAM_R_VA4_FLOWVAR_2, RAM_R_VA5_FLOWVAR_1

Permanent RAM -

Routines used ROM_DIV_BY_SHIFT

Unchanged registers (all registers X, Y, Z and R are in use)

ROM routine name ROM_PI_UPD

Description Pulse Interface Update routine
This routine calculates the number of pulses equivalent to a given flow
(in l/h), based on the configuration settings, and initializes it in the
SHR_PI_NPULSE register.

Prerequisite ROM_CFG_PULSE_IF must be called ONCE before using this routine,
and the resulting FLOW_SCALE_FACTOR must be moved to
RAM_R_FLOW_SCALE_FACT.

Input parameters /
register values

 X : Flow in liter per Hour (fd 16)
RAM_R_FLOW_SCALE_FACT must contain FLOW_SCALE_FACT (fd
16)
 (using ROM_CFG_PULSE_IF routine, see above)

Output/Return value SHR_PI_NPULSE register is updated with the Number of Pulses
equivalent to the current flow in l/h.

Temporary RAM RAM_R_VA5_FLOWVAR_1

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-10 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Permanent RAM RAM_R_FLOW_SCALE_FACT

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

ROM routine name ROM_PP_PI_UPD

Description This routine organizes the update of the pulse interface by calling
ROM_PI_UPD with RAM_R_FLOW_LPH as input argument.

Prerequisite -

Input parameters /
register values

RAM_R_FLOW_LPH: current flow in l/h (fd 16)

Output/Return value SHR_PI_NPULSE register is updated with the Number of Pulses
equivalent to the current flow in l/h.

Temporary RAM -

Permanent RAM RAM_R_FLOW_LPH

Routines used ROM_PI_UPD

Unchanged registers (all registers X, Y, Z and R are in use)

ROM routine name ROM_RECFG_PULSEIF_FOR_ERROR1

Description Reconfigure the pulse interface outputs GPIO0 and GPIO1 as normal
GPIOs to signal an error. Use this routine once whenever the pulse
interface has to signal an error, then repeat calling (e.g. once in every
measurement cycle) ROM_SIGNAL_ERROR_ON_PULSEIF.

Prerequisite -

Input parameters /
register values

-

Output/Return value Register CR_GPC is configured for using GPIO 0 and GPIO 1 as normal
GPIO output, such that the CPU has direct control over the signals.

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers X, Y, Z

ROM routine name ROM_SIGNAL_ERROR_ON_PULSEIF1

Description Signaling error on the “pulse interface” outputs GPIO0 and GPIO1.
GPIO0: Output =1
GPIO1 : Output - toggling signal (toggles after every routine call).
Prepare signaling an error over the pulse interface by calling
ROM_RECFG_PULSEIF_FOR_ERROR (to hand over signal control to
the CPU). Then repeat calling ROM_SIGNAL_ERROR_ON_PULSEIF
(e.g. once in every measurement cycle) as long as the error condition
remains.

Prerequisite Call ROM_RECFG_PULSEIF_FOR_ERROR once before

Input parameters /
register values

The last state of GPIOs is stored in SHR_GPO

Output/Return value GPIO0: Output =1
GPIO1 : Output - toggling signal (toggles after every routine call).

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers Y, Z

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-11

ROM routine name ROM_RECFG_PULSEIF_FOR_PULSE1

Description Configures GPIO0 and GPIO1 as pulse interface outputs in direction
mode. Use this routine to initialize the pulse interface on GPIO0 and
GPIO1, or to end an error state after
ROM_RECFG_PULSEIF_FOR_ERROR and
ROM_SIGNAL_ERROR_ON_PULSEIF were applied.

Prerequisite -

Input parameters /
register values

-

Output/Return value Register CR_GPC is configured for using GPIO 0 and GPIO 1 as pulse
interface outputs in direction mode.

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers X, Y, Z

ROM routine names ROM_SAVE_FLOW_VOLUME / ROM_SAVE01_FLOW_VOLUME
ROM_SAVE1_FLOW_VOLUME / ROM_SAVE11_FLOW_VOLUME
ROM_SAVE2_FLOW_VOLUME / ROM_SAVE21_FLOW_VOLUME
ROM_SAVE3_FLOW_VOLUME / ROM_SAVE31_FLOW_VOLUME

Description These routines are used to calculate the flow volume of one
measurement cycle from the present flow (usually in l/h), and store it
cumulatively to flow volume (usually in cubic meter).
Operation: FLOW_LPH * VOLUME_FACTOR (V.F.)
 -> flow (e.g. in cubic meters) per cycle
 -> accumulate (add to/subtract from) the flow volume
 (integer and fractional part)

Calculation steps for VOLUME_FACTOR for liter -> l/h:
a) FLOW_LPH/3600 -> FLOW_LPS
b) FLOW_LPS * MEAS_RATE_INV -> FLOW in liter per meas. cycle
c) Flow in liter per meas. cycle/1000 -> Flow in cubic meter per cycle
d) Flow in cubic meter per cycle -> add it to the Flow Volume
 (integer and fractional part)
Actual calculation of the VOLUME_FACTOR from configuration data:
 VOLUME_FACTOR = [(TS_CM + 1) * TS_CT * TOF_RATE] /
 [(1000 + (LP_MODE*24))*3600*1000]
Here the following configuration parameters are used:
- TS_CM : Cycle mode (Task sequencer)
- TS_CT: Cycle time (Task sequencer)
- TOF_RATE: Time of Flight Rate
- LP_MODE: Low Power Mode (accounts for change in task sequencer
 period in low power mode from 1ms to 1000/1024ms)

The actual decision on units is done by the user through defining the
appropriate input scaling (l/h or something else) and
VOLUME_FACTOR.

Difference between
the routine calls:
The routines operate
either on usual RAM
or on firmware data
(FWD) RAM, which is
useful for regular per-
manent storage. Their
input comes from X, Y

ROM routine name RAM
region:

input from: parameterm
eaning:

1ROM_SAVE_FLOW_VOLUME RAM RAM Flow & V.F.
2ROM_SAVE1_FLOW_VOLUME RAM X,Y Flow & V.F.
3ROM_SAVE2_FLOW_VOLUME FWD X,Y Flow & V.F.
4ROM_SAVE3_FLOW_VOLUME FWD FWD-RAM Flow & V.F.
5ROM_SAVE01_FLOW_VOLUM
E, RAM X,Y Volume

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-12 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

or RAM, and can have
different meaning
(see below).

6ROM_SAVE11_FLOW_VOLUM
E

7ROM_SAVE21_FLOW_VOLUM
E,
8ROM_SAVE31_FLOW_VOLUM
E

FWD X,Y Volume

Prerequisite
depending on actual
call, see above

The RAM cells RAM_R_FLOW_VOLUME_INT and
RAM_R_FLOW_VOLUME_FRACTION must contain the flow volume of
previous measurements.
1,4RAM cells used for input must contain the right parameter (see above)

Input parameters /
register values:

The meaning of input
depends on the actual
call, see above.

 2,3X or 4FWD_R_FLOW_LPH or 1RAM_R_FLOW_LPH:
 the present flow value (fd 16, usually in l/h)
or 5,6,7,8X: the additional flow volume (fd 32, usually cubic meters)
 2,3Y or 4FWD_R_VOLUME_FACTOR or
1FWD_R_VOLUME_FACTOR:
 VOLUME_FACTOR (fd 44; note that this is usually
 a very small number, so the upper 12 fractional
 digits are zero and “above” the actual data word)
or 5,6,7,8Y = X

Output/Return value

Output may be in
usual RAM or FWD,
depending on actual
call, see above.

64-bit Volume Flow result in RAM Addresses
1,2,5,6RAM_R_FLOW_VOLUME_INT (integer, usually in cubic meters)
 RAM_R_FLOW_VOLUME_FRACTION (fd 32, usually in cubic
meters)
or
3,4,7,8FWD_R_FLOW_VOLUME_INT (integer, usually in cubic meters)
 FWD_R_FLOW_VOLUME_FRACTION (fd 32, usually in cubic
meters)

Temporary RAM -

Permanent RAM
depending on actual
call, see above

1,2,5,6RAM_R_FLOW_VOLUME_INT,
RAM_R_FLOW_VOLUME_FRACTION
or
3,4,7,8FWD_R_FLOW_VOLUME_INT,
FWD_R_FLOW_VOLUME_FRACTION;
1RAM_R_FLOW_LPH, RAM_R_VOLUME_FACTOR
or
4RAM_R_FLOW_LPH, RAM_R_VOLUME_FACTOR

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

Sensor temperature measurement:

ROM routine name ROM_TEMP_POLYNOM

Description This routine calculates the temperature of a PT sensor in °C using the
polynomial approximation
Temperature T
= {[(PT_COEFF2 * PT_RATIO) + PT_COEFF1] * PT_RATIO } +
PT_COEFF0
 where PT_RATIO = PT_RES / R0 of the PT sensor
PT_COEFF2 = 10.115 (fd 16)
PT_COEFF1 = 235.57 (fd 16)
PT_COEFF0 = -245.683 (fd 16)
This polynomial resembles the inverted R(T)-polynomial for PT
(according to IEC 60751:2008) within 3mK accuracy between 0°C and
100°C.

Prerequisite -

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-13

Input parameters /
register values

X: PT_RATIO (fd 16)

Output/Return value X: Temperature in °C (fd 16)

Temporary RAM -

Permanent RAM -

Routines used ROM_FORMAT1_64_TO_32BIT

Unchanged registers (all registers X, Y, Z and R are in use)

ROM routine name ROM_TEMP_LINEAR_FN

Description This routine is used to calculate the temperature of any sensor as a
linear function of sensor resistance using the nominal resistance and
sensor slope. Applied formula:
 Temperature T = (Sensor Resistance at T[°C] – Nominal resistance) /
 RAM_R_VAF_REF_RES_VAL * Sensor slope

Prerequisite -

Input parameters /
register values

X: Nominal resistance (fd 16)
Y: Sensor slope (fd 16)
Z: Sensor resistance (fd 16)
RAM_R_VAF_REF_RES_VAL: Reference Resistance (fd
16)

Output/Return value X: Temperature (fd 16)

Temporary RAM -

Permanent RAM RAM_R_VAF_REF_RES_VAL

Routines used ROM_FORMAT1_64_TO_32BIT

Unchanged registers (all registers X, Y, Z and R are in use)

ROM routine name ROM_TM_SUM_RESULT

Description In sensor temperature measurement, each single time measurement is
repeated after some fixed delay time. Averaging these results eliminates
a possible 50/60 Hz disturbance. This routine sums up all duplicate
measurements (from the frontend data buffer in cells for measurement 1
and 2) and stores it in the frontend data buffer (in the cells of
measurement 1).
The routine works for all 2-wire or 4-wire temperature measurement
results, it reads the configuration from CR_TM.

Prerequisite The routine should be called directly after a temperature measurement.

Input parameters /
register values

All frontend data buffer (FDB) cells (addresses 0x80 – 0x9B)

Output/Return value The added results overwrite the original measurements in the first
measurement FDB cells (addresses 0x80- 0x84 and 0x8A - 0x92)

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

Interface communication

ROM routine name ROM_I2C_ST

Description I2C Start Byte Transfer: Initiate an I2C read or write operation,
depending on preceding i2crw-command (1=read, 0=write).

Prerequisite I2C slave device address must be defined in CR_PI_I2C. Read or write
direction must be defined by command i2crw (1=read, 0=write).

Input parameters /
register values

-

Output/Return value SRR_MSC_STF contains a flag to indicate I2C acknowledge (Bit
I2C_ACK).

Temporary RAM -

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-14 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Permanent RAM -

Routines used -

Unchanged registers X, Y, Z, R

ROM routine name ROM_I2C_BT

Description I2C Byte Transfer: Read or write one byte of data over I2C, depending
on preceding i2crw-command (1=read, 0=write).

Prerequisite I2C slave device address must be defined in CR_PI_I2C. Read or write
direction must be defined by command i2crw (1=read, 0=write).In write
case, R must point to the desired input RAM cell, and usually the bytedir
and bytesel command must be used to select the desired byte part of
the 4Byte-word in the RAM cell (use bytedir 0 and bytesel 4, 5, 6 or 7).

Input parameters /
register values

R is not changed, but used as pointer to the data register by the chip
hardware in write case (see “Prerequisite”).

Output/Return value SRR_MSC_STF contains a flag to indicate I2C acknowledge (Bit
I2C_ACK).
In read case, SRR_E2P_RD contains the transferred byte. For storing
the received byte in a 4Byte RAM cell, use the bytedir and bytesel
command to select the desired byte position (use bytedir 1 and bytesel
4, 5, 6 or 7, and the or command to add a new byte to a partly filled
4Byte-word).

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers X, Y, Z, R

ROM routine name ROM_I2C_LT

Description I2C Byte Transfer: Read or write the last transmitted byte of data over
I2C, depending on preceding i2crw-command (1=read, 0=write). The
routine sends the stop signal at the end of transmission.

Prerequisite I2C slave device address must be defined in CR_PI_I2C. Read or write
direction must be defined by command i2crw (1=read, 0=write).In write
case, R must point to the desired input RAM cell, and usually the bytedir
and bytesel command must be used to select the desired byte part of
the 4Byte-word in the RAM cell (use bytedir 0 and bytesel 4, 5, 6 or 7).

Input parameters /
register values

R is not changed, but used as pointer to the data register by the chip
hardware in write case (see “Prerequisite” below).

Output/Return value SRR_MSC_STF contains a flag to indicate I2C acknowledge (Bit
I2C_ACK).
In read case, SRR_E2P_RD contains the transferred byte. For storing
the received byte in a 4Byte RAM cell, use the bytedir and bytesel
command to select the desired byte position (use bytedir 1 and bytesel
4, 5, 6 or 7, and the or command to add a new byte to a partly filled
4Byte-word).

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers X, Y, Z, R

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-15

ROM routine name ROM_I2C_DWORD_WR

Description This routine is used to write a 4 byte-word of data to the I2C slave
device, starting at a given memory address.The device address for the
I2C device is taken automatically from I2C slave address of CR_PI_I2C.
The routine starts with switching on the HSC and switches it off after
transmission. It thus causes a high current consumption and has a long
runtime. In power critical applications, its use should thus be restricted.
Timing properties of the I2C slave should also be considered (e.g. long
storing times after some data transmission).

Prerequisite -

Input parameters /
register values

X: 16-bit memory address (start) where the data has to be written
Y: 4 bytes of data

Output/Return value The four bytes from Y are written to the I2C slave, starting at the
address given in X. In case of an error, the transmission was not
acknowledged by the I2C slave device and bit BNR_I2C_ABORT of
RAM_R_FW_STATUS is set.

Temporary RAM -

Permanent RAM RAM_R_VA1_I2CADDR, RAM_R_VA2_I2CDATA,
RAM_R_FW_STATUS

Routines used ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT

Unchanged registers Z

ROM routine name ROM_I2C_BYTE_WR

Description This routine is used to write a single of data to the I2C slave device to
given memory address. The device address for the I2C device is taken
automatically from I2C slave address of CR_PI_I2C.
The routine starts with switching on the HSC and switches it off after
transmission. It thus causes a high current consumption and has a long
runtime. In power critical applications, its use should thus be restricted.
Timing properties of the I2C slave should also be considered (e.g. long
storing times after some data transmission).

Prerequisite -

Input parameters /
register values

X: 16-bit address where the data has to be written
Y: 1 byte of data (B0 of the 32 bit -word in Y is transferred)

Output/Return value Byte B0 from Y is written to the I2C slave to the address given in X.
In case of an error, the transmission was not acknowledged by the I2C
slave device and bit BNR_I2C_ABORT of RAM_R_FW_STATUS is set.

Temporary RAM -

Permanent RAM RAM_R_VA1_I2CADDR, RAM_R_VA2_I2CDATA,
RAM_R_FW_STATUS

Routines used ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT

Unchanged registers Z

ROM routine name ROM_I2C_DWORD_RD

Description This routine is used to sequentially read 4 data bytes from the I2C slave
device, starting at a given memory address. The device address for the
I2C device is taken automatically from I2C slave address of CR_PI_I2C.
The routine starts with switching on the HSC and switches it off after
transmission. It thus causes a high current consumption and has a long
runtime. In power critical applications, its use should thus be restricted.
Timing properties of the I2C slave should also be considered.

Prerequisite -

Input parameters /
register values

X: 16-bit memory address (start) where the data is read.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-16 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Output/Return value X: 4 bytes of read data
In case of an error, the transmission was not acknowledged by the I2C
slave device and bit BNR_I2C_ABORT of RAM_R_FW_STATUS is set.

Temporary RAM -

Permanent RAM RAM_R_VA1_I2CADDR, RAM_R_FW_STATUS

Routines used ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT

Unchanged registers Z

ROM routine name ROM_I2C_BYTE_RD

Description This routine is used to sequentially read one single byte from the I2C
slave device from a given memory address. The device address for the
I2C device is taken automatically from I2C slave address of CR_PI_I2C.
The routine starts with switching on the HSC and switches it off after
transmission. It thus causes a high current consumption and has a long
runtime. In power critical applications, its use should thus be restricted.
Timing properties of the I2C slave should also be considered.

Prerequisite -

Input parameters /
register values

X: 16-bit memory address where the data is read.

Output/Return value X: Single data byte, stored in byte B0 of X
In case of an error, the transmission was not acknowledged by the I2C
slave device and bit BNR_I2C_ABORT of RAM_R_FW_STATUS is set.

Temporary RAM -

Permanent RAM RAM_R_VA1_I2CADDR, RAM_R_FW_STATUS

Routines used ROM_I2C_ST, ROM_I2C_BT, ROM_I2C_LT

Unchanged registers Z

ROM routine names ROM_COPY_UART_PRB_DATA / ROM_COPY1_UART_PRB_DATA

Description This routine copies the relevant data flow, temperature and flow volume
for the UART Master into the probe data area. When the system is setup
for UART communication, the data is then sent over UART interface to
the master after the firmware execution ended (see manual).
Probe Data Area 0xA0 - 0xA3
The alternative call ROM_COPY1_UART_PRB_DATA takes input data
from firmware data (FWD) cells instead of usual RAM cells, which in
some cases is preferable for permanent storage or memory
optimization.

Prerequisite The probe data area has to be configured in CR_UART
(UART_DATA_MSG_ADR=0xA0 and UART_DATA_MSG_LEN=4)

Input parameters /
register values

RAM_R_FLOW_LPH, RAM_R_THETA, RAM_R_FLOW_VOLUME_INT,
RAM_R_FLOW_VOLUME_FRACTION
 or, using ROM_COPY1_UART_PRB_DATA
FWD_R_FLOW_LPH, FWD_R_THETA, FWD_R_FLOW_VOLUME_INT,
FWD_R_FLOW_VOLUME_FRACTION

Output/Return value using ROM_COPY_UART_PRB_DATA or
ROM_COPY1_UART_PRB_DATA:
RAM_R_VA0_UART_PRB_DATA1=RAM…/ FWD_R_FLOW_LPH,
RAM_R_VA1_UART_PRB_DATA2=RAM…/ FWD_R_THETA,
RAM_R_VA2_UART_PRB_DATA3=RAM…/
FWD_R_FLOW_VOLUME_INT, RAM_R_VA3_UART_PRB_DATA4 =
 RAM…/
FWD_R_FLOW_VOLUME_FRACTION

Temporary RAM -

Permanent RAM RAM_R_FLOW_LPH, RAM_R_THETA, RAM_R_FLOW_VOLUME_INT,
RAM_R_FLOW_VOLUME_FRACTION

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-17

 or, using ROM_COPY1_UART_PRB_DATA
FWD_R_FLOW_LPH, FWD_R_THETA, FWD_R_FLOW_VOLUME_INT,
FWD_R_FLOW_VOLUME_FRACTION;
RAM_R_VA0_UART_PRB_DATA1, RAM_R_VA1_UART_PRB_DATA2,
RAM_R_VA2_UART_PRB_DATA3, RAM_R_VA3_UART_PRB_DATA4

Routines used -

Unchanged registers Y, Z

Housekeeping:

ROM routine name ROM_CPU_CHK

Description Check kind of CPU request: This routine is called by hardware design
after any Post Processing (PP) request. It checks the system handling
register SHR_CPU_REQ and calls the requested routines.

Prerequisite -

Input parameters /
register values

Flag settings in SHR_CPU_REQ

Output/Return value The routine directly calls firmware (MK_CPU_REQ), boot loader
(ROM_BLD) or checksum generation (ROM_CSM) using goto. These
routines generally return, after execution, to the start of
ROM_CPU_CHK to see if SHR_CPU_REQ has changed in the
meantime.

Temporary RAM (depending on called routines)

Permanent RAM (depending on called routines)

Routines used MK_CPU_REQ, ROM_BLD, ROM_CSM

Unchanged registers (all registers X, Y, Z and R are in use)

Call Address 61440 / 0xF000

ROM routine name ROM_USER_RAM_INIT

Description This ROM routine is used to initialize the entire user RAM with 0 as
default value.

Prerequisite -

Input parameters /
register values

-

Output/Return value All 176 user RAM cells (addresses 0x00 - 0xAF) are initialised to 0

Temporary RAM All 176 user RAM cells

Permanent RAM -

Routines used -

Unchanged registers Y, Z

High speed oscillator:

ROM routine name ROM_HSO_WAIT_SETTL_TIME

Description This routine is used to switch on the HSO clock and wait for a fixed
settling time to get a stable oscillation. A settling time of 122 us (4 clock
periods of the low speed clock) is waited, using the low speed clock
count value SRR_LSC_CV.

Prerequisite -

Input parameters /
register values

-

Output/Return value -

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers Z

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-18 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

ROM routine name ROM_HSC_CALIB

Description High speed clock (HSC) calibration is based on a measurement of 4
periods of the 32 kHz clock, which is done by the task sequencer as
configured. The result is stored in SRR_HCC_VAL as number of high
speed clock periods (fd 16, ideally 488.28125 or 976.5625 periods) .
This routine evaluates the high speed clock scaling factor for the 4 MHz
or 8 MHz clock using the formula
4 MHz : HSC_SCALE_FACT = 4 MHz/(32.768kHz/4) / SRR_HCC_VAL
8 MHz : HSC_SCALE_FACT = 8 MHz/(32.768kHz/4) / SRR_HCC_VAL
It additionally checks for the deviation of measured clock period from its
ideal value. If the deviation is greater than the input value in Z, then no
scaling is done and bit BNR_HS_CALIB_FAIL in the
RAM_R_FW_ERR_FLAGS register is set.

Prerequisite The measurement of SRR_HCC_VAL must be done (initiated by the
task sequencer)

Input parameters /
register values

Z: Maximum allowed clock deviation in periods of the HSC
(usually from the firmware register value FWD_HSC_DEV
before the call).

(fd 16)

Output/Return value Calibration factor in RAM_R_HSC_SCALE_FACT (fd 24)

Bit BNR_HS_CALIB_FAIL (Bit 0) in
RAM_R_FW_ERR_FLAGS register is set if the clock deviation
is greater than allowed.

Temporary RAM -

Permanent RAM RAM_R_HSC_SCALE_FACT, RAM_R_FW_ERR_FLAGS

Routines used -

Unchanged registers Z

ROM routine name ROM_SCALE_WITH_HSC

Description Routine to scale the input parameter with the HS Clock Calibration
factor (RAM_R_HSC_SCALE_FACT)
Scaled output = Input / RAM_R_HSC_SCALE_FACT

 Prerequisite RAM_R_HSC_SCALE_FACT must have the valid HS Clock Calibration
factor (Use ROM_HSC_CALIB routine)

 Inputs X - Parameter to be scaled (any format, integer value < 230)

 Output X - Scaled parameter (same format as input X)

 Temporary RAM -

 Permanent RAM RAM_R_HSC_SCALE_FACT

 Routines used -

Unchanged registers Z

Configuration:

ROM routine name ROM_RESTORE_TOF_RATE / ROM_RESTORE1_TOF_RATE

Description Routine to reconfigure the TOF_RATE generator to the original setting,
stored in RAM_R_CFG_TOF_RATE. The alternative call
ROM_RESTORE1_TOF_RATE does not use RAM_R_CFG_TOF_RATE,
but Y as input for the TOF rate and thus permits a differently chosen
value.
The routine can only be used for TOF rates up to 31.

Prerequisite -

Input parameters /
register values

RAM_R_CFG_TOF_RATE (using ROM_RESTORE_TOF_RATE) or
Y (using ROM_RESTORE1_TOF_RATE): new TOF rate (< 32)
(integer)

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-19

Output/Return value The TOF rate is reconfigured in SHR_TOF_RATE according to the
input, and bit BNR_TOF_RATE_REDUCED in RAM_R_FW_STATUS is
cleared.

Temporary RAM -

Permanent RAM RAM_R_CFG_TOF_RATE, RAM_R_FW_STATUS

Routines used -

Unchanged registers X, Z

ROM routine name ROM_RECFG_TOF_RATE

Description Routine to reconfigure TOF_RATE generator for less measurements,
depending on the parameter N: New TOF_RATE = Original TOF_RATE
* N
The actual measurement is done only every Nth time.
The routine manipulates SHR_TOF_RATE for this adjustment.
It is only usable for TOF_RATES up to 31.

Prerequisite -

Input parameters /
register values

 X - Factor N for lowering the TOF_RATE

Output/Return value

 Z - Original TOF_RATE value from SHR_TOF_RATE Register
TOF_RATE bits in SHR_TOF_RATE Register are changed (see
description).
Bit BNR_TOF_RATE_REDUCED is set in RAM_R_FW_STATUS
register to indicate that the TOF_RATE was reconfigured.

Temporary RAM -

Permanent RAM RAM_R_FW_STATUS

Routines used -

Unchanged registers (all registers X, Y ,Z and R are in use)

Mathematics:

ROM routine name ROM_FORMAT_64_TO_32BIT

Description Routine to format a 64-bit value (in Y and X) into a 32 bit result with 16
integer + 16 fractional bits
This can be used to format 64 bit multiplication results with 32 integer +
32 fractional bits into a usual fd 16 word. The MSB of the integer part in
Y defines the sign, as if Y and X would be a single 64 bit word.
This routine has the same function as ROM_FORMAT1_64_TO_32BIT,
but does not need RAM. It is, however, essentially slower.

Prerequisite -

Input parameters /
register values

Y: Higher 32 bits of the value
 (integer part with maximum 16 significant bits, signed !)
X: Lower 32 bits of value (fractional part, unsigned !)

Output/Return value X: 32-bit result with 16 Integer + 16 fractional bits (fd 16)

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers Z, R

ROM routine name ROM_FORMAT1_64_TO_32BIT

escription Routine to format a 64-bit value (in Y and X) into a 32 bit result with 16
integer + 16 fractional bits
This can be used to format 64 bit multiplication results with 32 integer +
32 fractional bits into a usual fd 16 word. The MSB of the integer part in
Y defines the sign, as if Y and X would be a single 64 bit word.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-20 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

This routine has the same function as ROM_FORMAT_64_TO_32BIT,
but is essentially faster at the cost of one temporary RAM cell.

Prerequisite -

Input parameters /
register values

Y: Higher 32 bits of the value
 (integer part with maximum 16 significant bits, signed !)
X: Lower 32 bits of value (fractional part, unsigned !)

Output/Return value X: 32-bit result with 16 Integer + 16 fractional bits (fd 16)

Temporary RAM RAM_R_V1F_SHIFT

Permanent RAM -

Routines used -

Unchanged registers Z

ROM routine name ROM_DIV_BY_SHIFT

Description Routine to perform the division of a value Y by X, where X=2^N is an
integer power of two.
Result = Y/X = Y/2^N

Prerequisite -

Input parameters /
register values

X - Divisor (denominator) = 2^N value (integer)
Y - Dividend (numerator) (any format)

Output/Return value Y - Result of division (same format as input Y)

Temporary RAM -

Permanent RAM -

Routines used -

Unchanged registers Z, R

ROM routine name ROM_SQRT

Description This routine is used to evaluate the square root using the Newton
method accurately for values in the range (196 <= X <= 5476).
sqrt(x) is calculated by iterating the following steps
 1. Choose GUESS = 32; Iteration counter = 3
 2. Find x/GUESS
 (1st division by shift and normal division for next 2 iterations)
 3. Average of GUESS and x/GUESS
 4. GUESS <--- Average ; Decrement iteration counter
 5. Repeat steps 2-4 till counter = 0
 6. SquareRoot = Last GUESS value
When used in flow temperature calculation, values of X between
196 = (14^2) and 5476 = (74^2) result in temperature errors < 1°C.
This X range is equivalent to a temperature range of 60°C to 0°C.

Prerequisite -

Input parameters /
register values

 X : Radicand (fd 16, 196 <= X <= 5476)

Output/Return value : Square root of input X (fd 16)

Temporary RAM RAM_R_V2F_SQRT_X, RAM_R_V2E_SQRT_Y

Permanent RAM -

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 5-21

ROM routine name ROM_LINEAR_CORRECTION / ROM_LINEAR1_CORRECTION

Description Linear interpolation of a coefficient over any parameter (here: tempera-
ture), knowing the coefficient value at two points and given the current
value of the parameter (stored in RAM_R_VA3_CURRENT_THETA)
Applied formula:
 Result =
 slope * (RAM_R_VA3_CURRENT_THETA - Parameter@Point1) +
offset
 = X * (RAM_R_VA3_CURRENT_THETA - Y) + Z
When the coefficient value is known at two parameter points, slope and
offset can be calculated as
 slope = (Coefficent@Point2 - Coefficent@Point1) /
 (Parameter@Point2 - Parameter@Point1)
 offset = Coefficent@Point1
The routine has an alternative call address
ROM_LINEAR1_CORRECTION, where the RAM cell of the current
parameter value can be freely chosen.

Prerequisite -

Input parameters /
register values

X : Slope between the two points (fd 16)
Y: Parameter@Point1 (fd 16)
Z: Offset (fd 16)

RAM_R_VA3_CURRENT_THETA current parameter (temperature) (fd
16)
With alternative call ROM_LINEAR1_CORRECTION:
R: Pointer to RAM cell with current parameter value

Output/Return value X: Coefficient corrected linearly over temperature

Temporary RAM -

Permanent RAM RAM_R_VA3_CURRENT_THETA
(none when ROM_LINEAR1_CORRECTION is used)

Routines used ROM_FORMAT1_64_TO_32BIT

Unchanged registers (all registers X,Y,Z and R are in use)

ROM routine name ROM_FIND_SLOPE

Description This routine is used to find the slope between two points, given the
coefficient and corresponding parameter values at the two points (for
example two correction factors over two temperatures).
The routine is used as preparation for any linear interpolation.
Basically, all input- and output-values have the same format. Due to
internal calculations, the format must be chosen such that the four
leading bits of the parameters are zero, and at least 12 leading bits of
the resulting slope are zero, too. Otherwise the result will be wrong.

Prerequisite Parameter interval (RAM_R_VA5_FLOWVAR_1 – Z) must be
numerically larger than (Y - X)/23, to avoid overflow in an internal
division.

Input parameters /
register values

X : Coefficient at point 1 (any format, typically 16 fd)
Y: Coefficient at point 2 (same format as X)
Z: Parameter at point 1 (same format as X, 4 leading bits must be 0)
RAM_R_VA5_FLOWVAR_1: Parameter at point 2 (same format as Z)

Output/Return value X : Slope (same format as input X; 12 leading bits are always 0)

Temporary RAM -

Permanent RAM RAM_R_VA5_FLOWVAR_1

Routines used -

Unchanged registers (all registers X, Y, Z and R are in use)

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

5-22 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 6-1

6 CPU Handling

6.1 CPU Handling

As soon as one of the bits in the system handling register SHR_CPU_REQ is set, the CPU starts

with the request handling. All bits are typically triggered by the task sequencer, the error handling, a

general purpose pin or the remote control. For test or debugging purposes it is also possible to write

directly to these registers.

Post processing is activated having set bits CPU_REQ_EN_PP in register CR_IEH and PP_EN in

CR_MRG_TS. There, following requests are possible to start execution of program code in CPU:

▪ CPU_REQ_BLD_EXC: Bootloader

▪ CPU_REQ_CHKSUM: Checksum Generation

▪ CPU_REQ_PP: Post Processing triggered by task sequencer

▪ CPU_REQ_GPH: General Purpose Handling triggered by general purpose timer

▪ CPU_REQ_FW_INIT: Firmware Initialization

Program Code in green colour has to be defined and programmed by customer, whereby public

subroutines in Firmware ACAM Code or ROM Code can also be used by customer.

The request bits have to be cleared by the system program code or the user program code.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

6-2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Figure 6-1 CPU request handling

[0xF000]
ROM Check of CPU Request

SHR_CPU_REQ

CPU Request

CPU

General
ROM

Subroutines

ROM Code

Firmware User Code

Bootloader

Checksum Generation

[0x0000]
FW User Check of CPU Request

ROM: 4 kByteNVRAM: 4 kByte

FW ACAM

General
Subroutines

…
…

..

Firmware ACAM Code

Start StopC
le

ar

R
eq

u
es

t

C
h

ec
k

R
eq

u
es

t

C
h

ec
k

R
eq

u
es

t

C
le

ar

R
eq

u
es

t

Post Processing

Asynchronous
Error Handling

General Purpose
Handling

Firmware
Initialization

…
…

..

0x0000

0x0FFF

FWU_RNG

0xFFFF

0xF000

6.1.1 Check of CPU Request

In case that any of the request bits is set in SHR_CPU_REQ the CPU starts at first with code in the

ROM that checks the type of request.

In case of a post processing request, a general purpose request or a firmware initialization request

the CPU jumps into firmware code. This means that the user has to implement in his firmware also a

CPU request check.

▪ Post Processing (FW code): This will be the most common request, namely for data post

processing like flow or temperature calculation.

▪ General purpose handling (FW code):

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 6-3

▪ Bootloader (ROM code): The bootloader is always requested after a system reset has been

occurred. The bootloader loads the configuration data into the register area, gets the

firmware revision, sets the high speed clock, activates the task sequencer, optionally

activates the CRC mode for UART and finally sets the checksum generation request.

However, bootloader actions are only performed if the bootloader release code is set

(register BLD_RLS: 0xABCD_7654). In a final initialization, the bootloader also sets a CPU

request for “FW Init” and, if configured, a request for “Checksum Generation”. Finally, the

bootloader clears its request in SHR_CPU_REQ and jumps back to ROM Check of CPU

Request.

▪ Checksum generation (ROM code): Checksum generation can be requested by remote

command RC_FW_CHKSUM, by the bootloader or the checksum timer. The checksums of all

four FW areas will be generated and compared to the checksums stored at as FWD1, FWD2,

FWU and FWA in the RAA. At last the checksum generation clears its request in

SHR_CPU_REQ and jumps back to ROM Check of CPU Request.

▪ Firmware initialization (FW code): Besides the configuration done by the boatloader some

additional configurations can be performed, which typically are some initializations of the

SHR register.

http://www.acam.de/

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 7-1

7 Assembler Software

The TDC-GP30 assembler is integrated into the GP30 evaluation software. It is opened in the

Firmware menu of the main program:

The following window comes up:

This is a comfortable editor with syntax highlighting, search and replace, copy and paste functions.

Under menu item “Assembler” the user finds the compile and download options.

Whether the call of these functions was successful or not is indicated by the messages at the bottom

of the assembler window.

Pressing “Download” here or in the main program’s “Firmware” menu item has the same effect. The

“Download Firmware and Data” Window is opened:

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

7-2 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

Figure 7-1 Firmware download window

In this window the user can load firmware code (programs) and firmware data (e.g. calibration data).

By pressing the “Verify” button the checksums of the two files is compared to the checksum

calculated in the GP30.

After the firmware was downloaded, it is necessary to

activate the CPU post-processing. This is done in the

main program under tabulator “Clock control & Power

& Task Sequencer”.

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 7-3

Download the new configuration before starting the next measurement.

For debugging purposes use the RAM Memory window where you can read the RAM content:

The main program has a menu item “Firmware/CPU values”. This one is firmware specific and

actually for acam internal purpose only.

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

7-4 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

7.1 Assembly Programs

The TDC-GP30 assembler is a multi-pass assembler that translates assembly language files into

HEX files as they will be downloaded into the device. For convenience, the assembler can include

header files. The user can write his own header files but also integrate the library files as they are

provided by acam. The assembly program is made of many statements which contain instructions

and directives. The instructions have been explained in the former section 3 of this datasheet. In the

following sections we describe the directives and some sample code.

Each line of the assembly program can contain only one directive or instruction statement.

Statements must be contained in exactly one line.

Symbols

A symbol is a name that represents a value. Symbols are composed of up to 31 characters from the

following list:

A - Z, a - z, 0 - 9, _

Symbols are not allowed to start with numbers. The assembler is case sensitive, so care has to be

taken for this.

Numbers

Numbers can be specified in hexadecimal or decimal. Decimal have no additional specifier.

Hexadecimals are specified by leading “0x”.

Expressions and Operators

An expression is a combination of symbols, numbers and operators. Expressions are evaluated at

assembly time and can be used to calculate values that otherwise would be difficult to be

determined.

The following operators are available with the given precedence:

Level Operator Description

1 () Brackets, specify order of execution

2 * / Multiplication, Division

3 + — Addition, Subtraction

Example:

const value 1

equal ((value + 2)/3)

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 7-5

Directives

The assembler directives define the way the assembly language instructions are processed. They

also provide the possibility to define constants, to reserve memory space and to control the

placement of the code. Directives do not produce executable code.

The following table provides an overview of the assembler directives.

Directive Description Example

CONST Constant definition, CONST [name] [value]
value might be a number, a constant, a sum
of both

CONST REV_ADDRESS 3964

CONST FW_VER + 2

LABEL: Label for target address of jump instructions.
Labels end with a colon. All rules that apply
to symbol names also apply to labels. Labels
must be followed by an instruction. Add one
nop if the label would be followed directly by
ORG.

jsub BLD_CFG;

BLD_CFG:

 move y,16;

; Comment, lines of text that might be
implemented to explain the code. It begins
with a semicolon character. The semicolon
and all subsequent characters in this line will
be ignored by the assembler. A comment can
appear on a line itself or follow an
instruction.

; Call Address: XXX

org Sets a new origin in program memory for
subsequent statements.

org 0

equal Insert three bytes of user defined data in
program memory, starting at the address as
defined by org.

 equal 0xcfcf01

#include Include the header or library file named in
the quotation marks "". The code will be
added at the line of the include command.

In quotation marks there might be just the file
name in case it is in the same folder as the
program, but also the complete path.

#include "GP30Y_FW_v2.h"

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

7-6 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

7.2 Basic Structure

The following code shows the basic structure of a GP30 firmware.

7.3 Example 1: Simple TOF Difference via Pulse Interface

;---- File : GP30Y_A1.F1.11.01.asm

;----------- include files --------------------

#include "GP30Y_A1.F1.11.01.h" ; header file containing memory address, constants def.

#include "GP30Y_ROM_A1.common.h" ; Definition of ROM routine start addresses

;------------ Version number definition ---------------------------

CONST FW_ROMVERSION_REV 0xA1

CONST FW_VERSION_NUM 0xF11101

CONST ROM_FWI 0xf85b ; 63579 Start address for acam's firmware init, used here

 ; merely for pulse interface and first hit initialisation

org 0 ; File start

;========================= Check of CPU Requests - Main loop ============================

; This routine checks the status flags for activity requests and calls the according routines

; Inputs : Status flags in SRR_FEP_STF and SHR_CPU_REQ

; Output : all processing done and status flags cleared

; (total)unused: (all used)

; Temporary RAM : -

; Permanent RAM : RAM_R_FW_STATUS, RAM_FEP_STF

; Routines used : ROM_FWI, MK_PP, ROM_CPU_CHK

;==

MK_CPU_REQ:

 nop ;--

; save front end status flags in RAM_FEP_STF for remote

; communication and RAM_R_FW_STATUS for processing control

 ramadr SRR_FEP_STF ; Front end Status Flags

 move x, r ; Saving the FEP Status flags for further processing

 ramadr RAM_FEP_STF

 move r,x ; save a copy of SRR_FEP_STF as flags for remote com.

 ramadr RAM_R_FW_STATUS

 and r, 0xFFFFFC0C ; Clearing only the bits in the RAM_R_FW_STATUS pertaining to

 ; the SRR_FEP_STS register

 or r, x ; The status flags from the SRR_FEP_STS is copied to the

 ; RAM_R_FW_STATUS Check for CPU requests: Here only Firmware init

 ; and Post processing (others ignored)

 ramadr SHR_CPU_REQ ; Set RAM Address to SHR_CPU_REQ

 skipBitC r, BNR_FWI, 1 ; Check Firmware Init Flag

 goto ROM_FWI ; Jump to Firmware Init; return to start over ROM routine

 ; ROM_CPU_CHK

 ramadr SHR_CPU_REQ ; Set RAM Address to SHR_CPU_REQ

 skipBitC r, BNR_PP, 1 ; Check User Memory Post Processing Flag

 goto MK_PP ; Jump to User Post Processing; return to start over ROM

 ; routine ROM_CPU_CHK

; if the process ever gets here... (usually ROM_CPU_CHK ends execution when all CPU requests are

; cleared)then some request was missed; indicate error by saving the current SHR_CPU_REQ

 ramadr SHR_CPU_REQ

 move x,r

 ramadr RAM_CPU_REQ_ERROR ; save a copy of the current CPU request register here

 move r,x

 stop ; end execution without looking back, to avoid infinite loops

;############################## End of Main Program MK_CPU_REQ ##########################

;============================== Post Processing - simple PI output version ==============

MK_PP:

 ramadr RAM_R_FW_STATUS ; Firmware Status

 skipBitC r, BNR_FLOW_CALC_REQ, 2 ; Check if a new measurement requests for calculation...

 jsub MK_PP_DIFTOF_SCALE ; Jump to PP-Subroutine Flow Calculation

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 7-7

 jsub ROM_PP_PI_UPD ; Jump to PP-Subroutine Pulse Interface Update

MK_PP_END:

 clrwdt ; Clearing watchdog

 ramadr SHR_CPU_REQ ; SHR_CPU_REQ

 bitclr r, BNR_PP ; Clear UPM Post Processing Flag directly in CPU Request Register

 goto ROM_CPU_CHK ; Jump Back to CPU Request Check in System Memory

;##################################### End of MK_PP

;=============== Flow Calculation - simple scaling of DIFTOF to flow version ======

MK_PP_DIFTOF_SCALE:

 nop

;----------------------- Reading and Unifying TOF raw values-----------------------

 ramadr FDB_US_TOF_ADD_ALL_U ; TOF Sum Up of all the configured hits

 move y, r

 ramadr FDB_US_TOF_ADD_ALL_D ; TOF Sum Down of all the configured hits

 move z, r

 ramadr RAM_R_TOF_HIT_NO

 move x, r

 divmod y, x

 ramadr RAM_R_VA5_TOF_TO_FLT_U ; TOF sum up scaled to single TOF

 move r, y

 move y, z ; Z Accu : Down measurement TOF_ADD_ALL

 ramadr RAM_R_TOF_HIT_NO

 move x, r

 divmod y, x

 ramadr RAM_R_VA6_TOF_TO_FLT_D ; TOF sum down scaled to single TOF

 move r, y

;----------- Calculate DIFTOF: ROM_CALC_TOF_DIFF directly uses the RAM addresses from above ---

 jsub ROM_CALC_TOF_DIFF ; Calculate the DIFF TOF = TOF_UP - TOF_DOWN

 ; scaling DIFTOF to s with fd32

 ramadr RAM_R_TDC_PERIOD ; 125 or 250s * 10^-9 * 2^32

 move y,r

 mult y,x

 jsub ROM_FORMAT1_64_TO_32BIT ; Result in x with 16 integer + 16 fractional digits

 ; x contains now DIFTOF in s fd 32

 move y,0x3B9ACA00 ;scale to ns by multiplying 10^9/2^16 fd 16

 mult y,x

 jsub ROM_FORMAT1_64_TO_32BIT ; Result in x with 16 integer + 16 fractional digits

 ; apply scaling factor; DIFTOF in ns fd 16 is still in x

 ramadr FWD_SIMPLE_SCALE ; read scaling factor from firmware data fd16

 move y,r

 mult y,x

 jsub ROM_FORMAT1_64_TO_32BIT ; Result in x with 16 integer + 16 fractional digits

 ramadr RAM_R_FLOW_LPH

 move r, x ; Flow result in Lph with 16 fd

; Accumulating the measured Flow cumulatively to get Flow Volume in Cubic meter

 jsub ROM_SAVE_FLOW_VOLUME ; Cumulative volume result is in RAM_R_FLOW_VOLUME_INT

 ; and _FRACTION

MK_PP_DIFTOF_SCALE_END:

 jsubret

;############################## End of MK_PP_DIFTOF_SCALE #############################

;===================== Write Version number at the end of the writable hex code =======

 org REV_ADDRESS

 equal1 FW_ROMVERSION_REV

 equal FW_VERSION ; Defined at the beginning of this file

;======================== Fill file with zeros for locked memory part =================

 org 4094

 nop

http://www.acam.de/

Ultrasonic Flow Converter Vol. 2 TDC-GP30

7-8 www.acam.de www.ams.com DB_GP30Y_Vol1_en.docx V0.2

;================================== MK_END_OF_FW ======================================

;############################# End of MK_END_OF_FW ####################################

TDC-GP30 Vol. 2

 DB_GP30Y_Vol2_en.docx V0.2 www.acam.de www.ams.com 8-1

8 Miscellaneous

8.1 Bug Report

8.2 Last Changes

19.09.2019 Labels must be followed by an instruction . Add nop if followed by org

27.06.2019
Version 0.1

ROM Routine ROM_FILTER_FLOW with fixed length
Instruction help clean up (RAMADR, NAND, skip)

http://www.acam.de/

acam-messelectronic gmbh

Friedrich-List-Straße 4

76297 Stutensee

Germany

Phone +49 7244 7419 – 0

Fax +49 7244 7419 – 29

E-Mail support@acam.de

www.acam.de www.ams.com

	Copyrights & Disclaimer
	1 Introduction
	1.1 CPU & Environment

	2 Program Area
	3 Random Access Area (RAA)
	3.1 RAM
	3.2 Direct mapped register
	3.3 NVRAM

	4 CPU
	4.1 Registers and Accumulators
	4.2 CPU Flags
	4.2.1 Carry (C)
	4.2.2 Overflow (O)
	4.2.3 Zero (Z)
	4.2.4 Sign (S)

	4.3 Arithmetic Operations
	4.4 Branch Instructions
	4.5 Instruction Set
	4.6 Detailed Description of Commands
	4.6.1 List of instructions

	5 Libraries and pre-defined routines
	5.1 common.h
	5.1.1 ROM Routines in Detail

	6 CPU Handling
	6.1 CPU Handling
	6.1.1 Check of CPU Request

	7 Assembler Software
	7.1 Assembly Programs
	7.2 Basic Structure
	7.3 Example 1: Simple TOF Difference via Pulse Interface

	8 Miscellaneous
	8.1 Bug Report
	8.2 Last Changes

